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ABSTRACT

Let g be a complex semisimple Lie algebra, and Y�(g), Uq(Lg) the corresponding Yangian and quantum loop
algebra, with deformation parameters related by q = eπι�. When � is not a rational number, we constructed in Gautam
and Toledano Laredo (J. Am. Math. Soc. 29:775, 2016) a faithful functor � from the category of finite-dimensional rep-
resentations of Y�(g) to those of Uq(Lg). The functor � is governed by the additive difference equations defined by the
commuting fields of the Yangian, and restricts to an equivalence on a subcategory of Repfd(Y�(g)) defined by choos-
ing a branch of the logarithm. In this paper, we construct a tensor structure on � and show that, if |q| �= 1, it yields an
equivalence of meromorphic braided tensor categories, when Y�(g) and Uq(Lg) are endowed with the deformed Drinfeld
coproducts and the commutative part of their universal R-matrices. This proves in particular the Kohno–Drinfeld theorem
for the abelian qKZ equations defined by Y�(g). The tensor structure arises from the abelian qKZ equations defined by
an appropriate regularisation of the commutative part of the R-matrix of Y�(g).
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1. Introduction

1.1. Let g be a complex semisimple Lie algebra, and Y�(g) and Uq(Lg) the Yan-
gian and quantum loop algebra of g. Recall that the latter are deformations of the en-
veloping algebras of the current Lie algebra g[s] of g and its loop algebra g[z, z−1] respec-
tively. We shall assume throughout that the deformation parameters � and q are related
by q = eπι�, and that q is not a root of unity.

The present paper builds upon the equivalence of categories of finite-dimensional
representations � : Repfd(Y�(g)) −→ Repfd(Uq(Lg)) constructed in [13].1 A natural
question stemming from [13] is whether � is a tensor functor, that is admits a family of
natural isomorphisms JV1,V2 : �(V1) ⊗ �(V2) → �(V1 ⊗ V2) of Uq(Lg)-modules which

� The second author was supported in part through the NSF grant DMS-1206305.
1 Strictly speaking, � is defined on a subcategory of Repfd(Y�(g)), and becomes an equivalence after restricting the

source category suitably. We will gloss over this point here, and refer the reader to [13] or Section 6 below for the precise
statement.
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are associative with respect to triples of representations.2 Partial evidence, pointing to-
wards a positive answer, is obtained in [13] where it is shown that � is compatible with
taking the q-characters of Frenkel–Reshetikhin and Knight, and therefore induces a ho-
momorphism of Grothendieck rings.

1.2. The goal of this paper is to show that � admits a tensor structure. Our main
result, which will be explained in more detail below, is that � gives rise to an equivalence
of meromorphic tensor categories. Moreover, when |q| �= 1, this equivalence also preserves
the meromorphic braiding arising from the abelianisation of the universal R-matrices of
Y�(g) and Uq(Lg).

This may be regarded as a meromorphic version of the Kazhdan–Lusztig equiva-
lence between the category O of representations of the affine algebra ĝ at level κ and
the category of finite-dimensional representations of the quantum group Uqg, where
q = eπι/m(κ+h∨) [17–19]. Here m is the ratio of the square length of the long roots to the
short roots and h∨ is the dual Coxeter number. More precisely, for κ /∈ Q, the central
ingredient of the KL equivalence is the construction of a tensor functor from the (Drin-
feld) category D(g) of finite-dimensional g-modules, with associativity and commutativity
constraints given by the monodromy of the KZ equations with deformation parameter
� = 1/(κ + h∨), to the category of finite-dimensional representations of Uqg [18].

In the present work, D(g) is replaced by Repfd(Y�(g)), Repfd(Uqg) by
Repfd(Uq(Lg)), and the KZ equations by an appropriate abelianisation of the additive,
difference qKZ equations defined by the universal R-matrix R(s) of Y�(g) [11, 27].

1.3. Our equivalence implies in particular that the monodromy of these differ-
ence equations, a meromorphic function of the spectral parameter ζ = e2πιs, is explicitly
expressed in terms of the abelianisation of the universal R-matrix R(ζ ) of Uq(Lg). The
latter result is a version of the Kohno–Drinfeld theorem for abelian qKZ equations.

This result was conjectured by Frenkel–Reshetikhin [11] for the non-abelian qKZ
equations, and proved in the rational and trigonometric cases by Tarasov–Varchenko
when g = sl2, and attention is restricted to evaluation representations with generic high-
est weights [29, 30].

One difficulty in addressing the general case is that no functorial way of relating
arbitrary representations of Y�(g) and Uq(Lg) was known to exist outside of type A prior
to [13].3 We shall prove the Kohno–Drinfeld theorem for the full (non-abelian) qKZ
equations for any g in a sequel to this paper [12].4

2 Although �(V) = V as vector spaces, JV1,V2 = idV1⊗V2 is not the required isomorphism since the actions of
Uq(Lg) on �(V1) ⊗ �(V2) and �(V1 ⊗ V2) do not coincide.

3 For g = sl2, evaluation representations of Y�(g) can be explicitly deformed to representations of Uq(Lg). More
generally, in type An, Moura proved the Kohno–Drinfeld Theorem for the trigonometric qKZ equations with values in the
vector representation of Uq(Lg) [5] and, jointly with Etingof, used this to construct a functor from the finite-dimensional
representations of Uq(Lg) arising from the RTT construction to those of Felder’s elliptic quantum group [9].

4 A more general result, for the Lie algebras associated by Maulik–Okounkov to quivers [24], was independently
announced by Okounkov [25]. It includes in particular the Kohno–Drinfeld theorem for the qKZ equations corresponding
to simply-laced Lie algebras.
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1.4. A crucial feature of our approach is that the relevant monoidal structures
arise from the deformed Drinfeld coproducts on Y�(g) and Uq(Lg), rather than from the stan-
dard (Kac–Moody) ones.5 The Drinfeld coproduct was defined for Uq(Lg) by Drinfeld
[6], and regularised through deformation by Hernandez [14, 15]. Whereas this coprod-
uct has long been understood to arise from the polarisation of the loop algebra g((z))

given by

g((z)) = (

n−((z)) ⊕ z−1
h
[

z−1
])⊕ (

h[[z]] ⊕ n+((z))
)

,

a proper understanding of the structure it confers finite-dimensional representations has
been lacking so far.

We define a similar deformed coproduct on Y�(g), and show that these endow
Repfd(Y�(g)) and Repfd(Uq(Lg)) with the structures of meromorphic tensor categories that
is, roughly speaking, categories endowed with a monoidal structure and associativity
constraints depending meromorphically on parameters. This notion was outlined by
Frenkel–Reshetikhin who used the term analytic tensor categories [11, p. 49], and formalised
by Soibelman to describe the structure of finite-dimensional representations of Uq(Lg)
corresponding to the standard coproduct and the universal R-matrix R(ζ ) [28]. Our
observation that the deformed Drinfeld coproduct fits within, and provides new exam-
ples of such categories seems to be new.

Our first main result may be succinctly stated as saying that � is a meromorphic
tensor functor.

1.5. Our second main result is that, when |q| �= 1, � is a braided meromorphic ten-
sor functor. In more detail, Repfd(Y�(g)) and Repfd(Uq(Lg)) are known not to be braided
tensor categories. As pointed out, however, the universal R-matrix R(ζ ) of Uq(Lg) de-
fines a meromorphic commutativity constraint on Repfd(Uq(Lg)) with respect to the stan-
dard tensor product ⊗.

We show that the same holds with respect to the deformed Drinfeld tensor product
⊗ζ , provided R(ζ ) is replaced by the diagonal component R0(ζ ) of its Gauss decomposi-
tion. Thus, Repfd(Uq(Lg)) may be endowed with two distinct structures of meromorphic
braided tensor category, namely as

(

Repfd

(

Uq(Lg)
)

,⊗,R(ζ )
)

and
(

Repfd

(

Uq(Lg)
)

,⊗ζ ,R0(ζ )
)

The latter structure does not seem to have been noticed before, though it should be closely
related to the large volume limit in quantum cohomology.6

We prove a similar result for the Yangian by constructing the commutative part
R0(s) of its universal R-matrix, and showing that it defines commutativity constraints for
the deformed Drinfeld tensor product ⊗s of Y�(g). The construction of R0(s) is more

5 The relation to the standard coproduct is discussed in 2.13.
6 These two structures are, in fact, meromorphically equivalent, see 2.13.
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delicate than that of R0(ζ ), and involves a non-trivial analytic regularisation of the formal
infinite product formulae for R0(s) obtained by Khoroshkin–Tolstoy [21].

We then show that

� : (Repfd

(

Y�(g)
)

,⊗s,R0(s)
)−→ (

Repfd

(

Uq(Lg)
)

,⊗ζ ,R0(ζ )
)

is compatible with the meromorphic braiding. As mentioned above, this implies in par-
ticular the Kohno–Drinfeld theorem for the additive qKZ equations defined by R0(s),
namely the fact that their monodromy is expressed in terms of R0(ζ ), where ζ = e2πιs.

2. Statement of main results

This section contains a more detailed description of our main results, their back-
ground, and a sketch of some of their proofs.

2.1. The deformed Drinfeld coproduct of Uq(Lg). — The Drinfeld coproduct on
Uq(Lg) was defined by Drinfeld in [6], and involves formal infinite sums of elements
in Uq(Lg)⊗2. Composing with the C×-action on the first factor, Hernandez obtained a
deformed coproduct, which is an algebra homomorphism

�ζ : Uq(Lg) → Uq(Lg)
((

ζ−1
))⊗ Uq(Lg)

where ζ is a formal variable [14, §6]. The map �ζ is coassociative, in the sense that
�ζ1 ⊗ 1 ◦ �ζ2 = 1 ⊗ �ζ2 ◦ �ζ1ζ2 [15, Lemma 3.4].

When computed on the tensor product of two finite-dimensional representations
V1,V2 of Uq(Lg), the deformed Drinfeld coproduct �ζ is analytically well-behaved.
Specifically, the action of Uq(Lg) on V1((ζ

−1))⊗V2 is the Laurent expansion at ζ = ∞ of
a family of actions of Uq(Lg) on V1 ⊗V2, whose matrix coefficients are rational functions
of ζ [15, Lemma 3.10]. We denote V1 ⊗ V2 endowed with this action by V1 ⊗ζ V2.

2.2. In Section 4, we give simple contour integral formulae for the action of
Uq(Lg) on V1 ⊗ζ V2. These yield an alternative proof of the rationality of ⊗ζ , as well as
an explicit determination of its poles as a function of ζ .

Specifically, let V be a finite-dimensional representation of Uq(Lg), I the set of ver-
tices of the Dynkin diagram of g, {	i(z),X±

i (z)}i∈I the End(V)-valued rational functions
of z ∈ P1 whose Taylor expansion at z = ∞,0 give the action of the generators of Uq(Lg)
on V (see Section 3.10), and σ(V) ⊂ C× the set of poles of these functions.

Let V1,V2 ∈ Repfd(Uq(Lg)), and let ζ ∈ C× be such that ζσ (V1) and σ(V2) are
disjoint. Then, the action of Uq(Lg) on V1 ⊗ζ V2 is given by the following formulae for
any m ∈ Z≥0 and k ∈ Z

�ζ

(

	±
i,±m

)=
∑

p1+p2=m

ζ±p1	±
i,±p1

⊗ 	±
i,±p2
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�ζ

(

X+
i,k

)= ζ kX+
i,k ⊗ 1 +

˛
C2

	i

(

ζ−1w
)⊗X+

i (w)wk−1dw

�ζ

(

X−
i,k

)=
˛

C1

X−
i

(

ζ−1w
)⊗ 	i(w)wk−1dw + 1 ⊗X−

i,k

where

• C1,C2 ⊂ C× are Jordan curves which do not enclose 0.
• C1 encloses ζσ (V1) and none of the points in σ(V2).
• C2 encloses σ(V2) and none of the points in ζσ (V1).

Direct inspection shows that �ζ is a rational function of ζ , with poles contained in
σ(V2)σ (V1)

−1.

2.3. A remarkable feature of the deformed Drinfeld coproduct ⊗ζ is that it en-
dows Repfd(Uq(Lg)) with the structure of a meromorphic tensor category in the sense of
[28]. This category is strict, in that for any V1,V2,V3 ∈ Repfd(Uq(Lg)), the identification
of vector spaces

(V1 ⊗ζ1 V2) ⊗ζ2 V3 = V1 ⊗ζ1ζ2 (V2 ⊗ζ2 V3)

intertwines the action of Uq(Lg).7

Meromorphic braided tensor categories were introduced by Soibelman in [28] to
formalise the structure of the category of finite-dimensional representations of Uq(Lg)
endowed with the standard (Kac–Moody) tensor product and the universal R-matrix
R(ζ ).

2.4. The deformed Drinfeld coproduct of Y�(g). — A Drinfeld coproduct was con-
jecturally defined for the double Yangian DY�(g) by Khoroshkin–Tolstoy [21]. Like
its counterpart for Uq(Lg), it involves formal infinite sums. Moreover, the Yangian
Y�(g) ⊂DY�(g) is not closed under it.

By degenerating our contour integral formulae for ⊗ζ , we obtain in Section 4.5
a family of actions V1 ⊗s V2 of Y�(g) on the tensor product of two finite-dimensional
representations of Y�(g), which is a rational function of a parameter s ∈ C. Its expansion
at s = ∞ should coincide with the deformation of the Drinfeld coproduct on DY�(g) via
the translation action of C on Y�(g), once the negative modes of DY�(g) are reexpressed
in terms of the positive ones through a Taylor expansion of the corresponding generating
functions.

7 Readers unfamiliar with the associativity identity above may note that it is also satisfied by the (holomorphic)
tensor product defined by V1 �ζ V2 = V1(ζ ) ⊗ V2, where ⊗ is the standard tensor product, and V1(ζ ) is the pull-back of
V1 by the C×-action on Uq(Lg) by dilations.
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Let {ξi,r, x±
i,r}i∈I,r∈Z≥0 be the loop generators of Y�(g) (see [7], or Section 3 for defi-

nitions). On a finite-dimensional representation V, the generating series

ξi(u) = 1 + �

∑

r≥0

ξi,ru
−r−1 and x±

i (u) = �

∑

r≥0

x±
i,ru

−r−1

are expansions at u = ∞ of End(V)-valued rational functions [13, Prop. 3.6]. Let
σ(V) ⊂ C be the he set of poles of the functions {x±

i (u), ξi(u)
±1}i∈I on V.

Let s ∈ C be such that σ(V1)+ s and σ(V2) are disjoint. Then, the action of Y�(g)

on V1 ⊗s V2 is given by

�s(ξi,r) = τs(ξi,r) ⊗ 1 + �

∑

p1+p2=r−1

τs(ξi,p1) ⊗ ξi,p2 + 1 ⊗ ξi,r

�s

(

x+
i,r

)= τs

(

x+
i,r

)⊗ 1 + �
−1

˛
C2

ξi(v − s) ⊗ x+
i (v)vrdv

�s

(

x−
i,r

)= �
−1

˛
C1

x−
i (v − s) ⊗ ξi(v)vrdv + 1 ⊗ x−

i,r

where τs is the translation automorphism of Y�(g) given by

τs

(

ξi(u)
)= ξi(u − s) and τs

(

x±
i (u)

)= x±
i (u − s)

and C1,C2 are Jordan curves such that

• C1 encloses σ(V1) + s and none of the points in σ(V2).
• C2 encloses σ(V2) and none of the points in σ(V1) + s.

As for Uq(Lg), direct inspection shows that the action of Y�(g) on V1 ⊗s V2 is
a rational function of s, with poles contained in σ(V2) − σ(V1). Moreover, the tensor
product ⊗s gives Repfd(Y�(g)) the structure of a meromorphic tensor category, which is
strict in the sense that, for any V1,V2,V3 ∈ Repfd(Y�(g))

(V1 ⊗s1 V2) ⊗s2 V3 = V1 ⊗s1+s2 (V2 ⊗s2 V3)

2.5. Meromorphic tensor structure on �. — Recall the notion of non-congruent represen-
tation of Y�(g) [13, §5.1]. Let {ξi(u), x±

i (u)}i∈I be the generating functions defined in 2.4.
V is called non-congruent if, for any i ∈ I, the poles of x+

i (u) (resp. x−
i (u)) do not differ

by non-zero integers. If V is non-congruent, the monodromy of the difference equations
defined by the commuting fields ξi(u) may be used to define an action of Uq(Lg) on the
vector space �(V) = V [13].
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2.6. If V1,V2 ∈ Repfd(Y�(g)) are non-congruent, the Drinfeld tensor product
V1 ⊗s V2 is generically non-congruent in s. Our first main result is the following (see
Theorem 7.3).

Theorem.

(i) There exists a meromorphic GL(V1 ⊗ V2)-valued function JV1,V2(s), which is natural in

V1,V2, and such that

JV1,V2(s) : �(V1) ⊗ζ �(V2) −→ �(V1 ⊗s V2)

is an isomorphism of Uq(Lg)-modules, where ζ = e2πιs.

(ii) J is a meromorphic tensor structure on �. That is, for any non-congruent V1,V2,V3 ∈
Repfd(Y�(g)), the following is a commutative diagram

(�(V1) ⊗ζ1 �(V2)) ⊗ζ2 �(V3)

JV1,V2 (s1)⊗1

�(V1) ⊗ζ1ζ2 (�(V2) ⊗ζ2 �(V3))

1⊗JV2,V3 (s2)

�(V1 ⊗s1 V2) ⊗ζ2 �(V3)

JV1⊗s1 V2,V3 (s2)

�(V1) ⊗ζ1ζ2 �(V2 ⊗s2 V3)

JV1,V2⊗s2 V3 (s1+s2)

�((V1 ⊗s1 V2) ⊗s2 V3) �(V1 ⊗s1+s2 (V2 ⊗s2 V3))

where ζi = exp(2πιsi).

2.7. Just as the functor � is governed by the abelian, additive difference equations
defined by the commuting fields ξi(u) of the Yangian, the tensor structure J (s) arises
from another such difference equation, namely an appropriate abelianisation of the q KZ
equations on V1 ⊗ V2 [11, 27].

Specifically, let

R0(s) = 1 + �

h

s
+ · · ·

be the diagonal part in the Gauss decomposition of the universal R-matrix of Y�(g) act-
ing on V1 ⊗ V2, where 
h ∈ h⊗h is the Cartan part of the Casimir tensor of g [21]. Un-
like the analogous case of Uq(Lg) [9, 20], the expansion of R0(s) does not converge near
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s = ∞. Indeed, when evaluated on the tensor product of highest-weight vectors of two
finite-dimensional irreducible representations of Y�(g), this series is given by the Stirling
expansion of a ratio of Gamma functions [21, Theorem 7.2], which is known not to con-
verge. We show, however, that R0(s) possesses two distinct, meromorphic regularisations
R0,±(s) in Section 5. These are asymptotic to R0(s) in the half-planes ±Re(s/�) 
 0,
and are related by the unitarity constraint R0,+(s)R0,−(−s)21 = 1.

Each R0,±(s) gives rise to the abelian q KZ equation

�±(s + 1) =R0,±(s)�±(s)

where �± is an End(V1 ⊗ V2)-valued function of s. This equation admits a canonical
right fundamental solution �±

+(s), which is holomorphic and invertible on an obtuse
sector contained inside the half-plane Re(s) 
 0, and possesses an asymptotic expansion
of the form (1+O(s−1))s�
h within it (see Proposition 7.1). The tensor structure JV1,V2(s)

may be taken to be �+
+(s + 1)−1 or �−

+(s + 1)−1, and is a regularisation of the infinite
product

· · ·R0,±(s + 3)R0,±(s + 2)R0,±(s + 1)

Specifically,

J ±
V1,V2

(s) = e�γ
h

←−
∏

m≥1
R0,±(s + m)e−

�
h

m

where γ = limn(1 + 1/2 + · · · + 1/n − log(n)) is the Euler–Mascheroni constant.

2.8. Regularisation of R0(s). — As mentioned above, the abelian R-matrix R0(s)

needs to be regularised. A conjectural construction of R0(s) as a formal infinite prod-
uct with values in the double Yangian DY�(g) was given by Khoroshkin–Tolstoy
[21, Thm. 5.2]. To make sense of this product, we notice in Section 5 that R0(s) for-
mally satisfies an abelian additive difference equation whose step is a multiple of �.8 We
then prove that the coefficient matrix A(s) of this equation can be interpreted as a ra-
tional function of s, and define R0,±(s) as the canonical fundamental solutions of the
difference equation. Let us outline this approach in more detail.

2.9. Let bij = diaij be the entries of the symmetrised Cartan matrix of g. Let T
be an indeterminate, and B(T) = ([bij]T) the corresponding matrix of T-numbers. Then,
there exists an integer l = mh∨, which is a multiple of the dual Coxeter number h∨ of g,
and is such that B(T)−1 = [l]−1

T C(T), where the entries of C(T) are Laurent polynomials
in T with coefficients in Z≥0 [21].

8 This equation should in turn be a consequence of the (non-linear) difference equation satisfied by the full R-matrix
of Y�(g) obtained from crossing symmetry.
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Consider the following GL(V1 ⊗ V2)-valued function of s ∈ C

A(s) = exp

⎛

⎜

⎝−
∑

i,j∈I
r∈Z

c
(r)

ij

˛
C

t′i (v) ⊗ tj

(

v + s + (l + r)�

2

)

dv

⎞

⎟

⎠

where

• cij(T) =∑

r∈Z c
(r)

ij Tr are the entries of C(T).
• the contour C encloses the poles of ξi(u)

±1 on V1.
• ti(u) = log(ξi(u)) is defined by choosing a branch of the logarithm.
• s ∈ C is such that v → tj(v + s + (l + r)�/2) is analytic on V2 within C, for every

j ∈ I and r ∈ Z such that c
(r)

ij �= 0.

We prove in Section 5.5 that A extends to a rational function of s which has the following
expansion near s = ∞

A(s) = 1 − l�2 
h

s2
+ O

(

s−3
)

2.10. The infinite product R0(s) considered in [21] formally satisfies

R0(s + l�) =A(s)R0(s)

This difference equation is regular (that is, the coefficient of s−1 in the expansion of A(s)

at s = ∞ is zero), and therefore admits two canonical meromorphic fundamental solu-
tions R0,±(s). The latter are uniquely determined by the requirement that they be holo-
morphic and invertible for ±Re(s/�) 
 0, and asymptotic to 1 + O(s−1) as s → ∞ in
that domain (see e.g., [2, 3, 22] or [13, §4]). Explicitly,

R0,+(s) =
−→
∏

n≥0
A(s + nl�)−1

R0,−(s) =
−→
∏

n≥1
A(s − nl�)

The functions R0,±(s) are distinct regularisations of R0(s), and are related by the
unitarity constraint

R0,+
V1,V2

(s)R0,−
V2,V1

(−s)21 = 1

We show in Theorem 5.9 that they define meromorphic commutativity constraints on
Repfd(Y�(g)) endowed with the Drinfeld tensor product ⊗s.
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2.11. Kohno–Drinfeld theorem for abelian qKZ equations. — Our second main result is
a Kohno–Drinfeld theorem for the abelian, additive qKZ equations defined by R0,±(s).
Together with Theorem 2.6, it establishes an equivalence of meromorphic braided ten-
sor categories between Repfd(Y�(g)) and Repfd(Uq(Lg)) akin to the Kazhdan–Lusztig
equivalence between the affine Lie algebra ĝ and corresponding quantum group Uqg.

Fix V1, . . . ,Vn ∈ Repfd(Y�(g)). The abelian qKZ equations are the integrable sys-
tem of additive difference equations for a meromorphic function F : Cn → End(V1 ⊗
· · · ⊗ Vn) which are given by [11, 27]

(2.1) F(s + ei) = Ai(s)F(s)

where s = (s1, . . . , sn) ∈ Cn, {ei}n
i=1 is the standard basis of Cn, and Ai(s) is given by

Ai(s) =R0,±
i−1,i(si−1 − si − 1)−1 · · ·R0,±

1,i (s1 − si − 1)−1

·R0,±
i,n (si − sn) · · ·R0,±

i,i+1(si − si+1)

with R0,±
i,j = R0,±

Vi,Vj
the regularisations of the commutative R-matrix of Y�(g) described

in 2.8.
These equations admit a set of fundamental solutions �±

σ which generalise the
right/left solutions in the n = 2 case. They are parametrised by permutations σ ∈ Sn,
and have prescribed asymptotic behaviour when si − sj → ∞ for any i < j, in such a way
that Re(sσ−1(i) − sσ−1(j)) 
 0. By definition, the monodromy of (2.1) is the 2-cocycle on
Sn with values in the group of meromorphic GL(V1 ⊗ · · · ⊗ Vn)-valued functions of the
variables ζi = e2πιsi given by

M±
σ,τ (s) = (

�±
σ (s)

)−1 · �±
τ (s)

2.12. A Kohno–Drinfeld theorem for the qKZ equations determined by the full
(non-abelian) R-matrix of Y�(g) was conjectured by Frenkel–Reshetikhin [11, §6]. It
states that the monodromy of (2.1), with R0 replaced by R, is given by the univer-
sal R-matrix R(ζ ) of Uq(Lg) acting on a tensor product of suitable q-deformations of
V1, . . . ,Vn.

Assuming that |q| �= 1, we prove this theorem for the abelian qKZ equations de-
termined by R0,±. To this end, we first construct the commutative part R0(ζ ) of the
R-matrix of Uq(Lg) in Section 8 by following a procedure similar to that described in
2.8–2.10. Namely, we start from Damiani’s formula for R0(ζ ) [4], show that it formally
satisfies a regular q-difference equation with respect to the parameter ζ , and deduce from
this that it is the expansion at ζ = 0 of the corresponding canonical solution (unlike the
case of Y�(g), no regularisation of R0(ζ ) is necessary here). We also show that R0(ζ )

defines meromorphic commutativity constraints on Repfd(Uq(Lg)) endowed with the de-
formed Drinfeld coproduct.

We then prove the following (Theorem 9.6)
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Theorem. — Assume that |q| �= 1, and set

ε =
{+ if |q| < 1

− if |q| > 1

Let V1, . . . ,Vn ∈ Repfd(Y�(g)) be non-congruent, and let V� = �(V�) be the corresponding repre-

sentations of Uq(Lg).
Then, the monodromy of the abelian qKZ equations determined by R0,ε(s) on V1 ⊗ · · · ⊗ Vn

is given by R0(ζ ). Specifically, the following holds for any σ ∈ Sn and i = 1, . . . , n − 1 such that

σ−1(i) < σ−1(i + 1),

(

�ε
σ (s)

)−1 · �ε
(i, i+1)σ (s) = R0

Vi,Vi+1

(

ζiζ
−1
i+1

)

The same result holds for the monodromy of the qKZ equations determined by R0,−ε(s),
provided R0(ζ ) is replaced by R0

21(ζ
−1)−1.9

2.13. Relation to the Kac–Moody coproduct. — We conjecture that the twist J (s)

also yields a non-meromorphic tensor structure on the functor �, when the categories
Repfd(Y�(g)) and Repfd(Uq(Lg)) are endowed with the standard monoidal structures
arising from the Kac–Moody coproducts on Y�(g),Uq(Lg).

More precisely, the Drinfeld and Kac–Moody coproducts on Uq(Lg) are related
by a meromorphic twist, given by the lower triangular part R

Uq(Lg)

− (ζ ) of the universal
R-matrix [8]. A similar statement holds for Y�(g) [12]. Composing, we obtain a mero-
morphic tensor structure J(s) on � relative to the standard monoidal structures

�(V1)(ζ ) ⊗ �(V2)
RUq(Lg)

− (ζ )

JV1,V2 (s)

�(V1) ⊗ζ �(V2)

JV1,V2 (s)

�(V1(s) ⊗ V2)
RY�(g)

− (s)

�(V1 ⊗s V2)

We conjecture that JV1,V2(s) is holomorphic in s, and can therefore be evaluated at s = 0,
thus yielding a tensor structure on � with respect to the standard coproducts. We will
return to this in [12].

9 Theorem 9.6 contains both of these statements in a uniform fashion. Thus R0(ζ ) of Theorem 2.12 above is
R0,ε(ζ ) of Theorem 9.6 with ε = ± according to the statement above.
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2.14. Extension to arbitrary Kac–Moody algebras. — The results of [13] hold for an
arbitrary symmetrisable Kac–Moody algebra g, provided one considers the categories
of representations of Y�(g) and Uq(Lg) whose restriction to g and Uqg respectively are
integrable and in category O. Although we restricted ourselves to the case of a finite-
dimensional semisimple g in this paper, our results on the Drinfeld coproducts of Y�(g)

and Uq(Lg) are valid for an arbitrary g, and it seems likely that the same should hold
for the construction of the tensor structure J (s). The main obstacle in working in this
generality is the construction and regularisation of R0(s) for an arbitrary g. Once this is
achieved, the proof of Theorems 2.6 and 2.12 carries over verbatim.

2.15. Outline of the paper. — In Section 3, we review the definitions of Y�(g) and
Uq(Lg). Section 4 is devoted to defining the Drinfeld coproducts on Uq(Lg) and Y�(g).
We give a construction of the diagonal part R0 of the R-matrix of Y�(g) in Section 5.
Section 6 reviews the definition of the functor � given in [13]. The construction of a
meromorphic tensor structure on � is given in Section 7. In Section 8, we show that,
when |q| �= 1, the commutative part R0(ζ ) of the R-matrix of Uq(Lg) defines a mero-
morphic commutativity constraint on Repfd(Uq(Lg)). Finally, in Section 9, we prove a
Kohno–Drinfeld theorem for the abelian qKZ equations defined by R0(s). Appendix A
gives the inverses of all symmetrised q-Cartan matrices of finite type.

3. Yangians and quantum loop algebras

3.1. Let g be a complex, semisimple Lie algebra and (·, ·) the invariant bilinear
form on g normalised so that the squared length of short roots is 2. Let h ⊂ g be a
Cartan subalgebra of g, {αi}i∈I ⊂ h∗ a basis of simple roots of g relative to h and aij =
2(αi, αj)/(αi, αi) the entries of the corresponding Cartan matrix A. Set di = (αi, αi)/2 ∈
{1,2,3}, so that diaij = djaji for any i, j ∈ I.

3.2. The Yangian Y�(g). — Let � ∈ C. The Yangian Y�(g) is the unital, associative
C-algebra generated by elements {x±

i,r, ξi,r}i∈I,r∈Z≥0 , subject to the following relations

(Y1) For any i, j ∈ I, r, s ∈ Z≥0

[ξi,r, ξj,s] = 0

(Y2) For i, j ∈ I and s ∈ Z≥0

[

ξi,0, x±
j,s

]= ±diaijx
±
j,s

(Y3) For i, j ∈ I and r, s ∈ Z≥0

[

ξi,r+1, x±
j,s

]− [

ξi,r, x±
j,s+1

]= ±�
diaij

2

(

ξi,rx
±
j,s + x±

j,sξi,r

)
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(Y4) For i, j ∈ I and r, s ∈ Z≥0

[

x±
i,r+1, x±

j,s

]− [

x±
i,r, x±

j,s+1

]= ±�
diaij

2

(

x±
i,rx

±
j,s + x±

j,sx
±
i,r

)

(Y5) For i, j ∈ I and r, s ∈ Z≥0

[

x+
i,r, x−

j,s

]= δijξi,r+s

(Y6) Let i �= j ∈ I and set m = 1 − aij . For any r1, · · · , rm ∈ Z≥0 and s ∈ Z≥0

∑

π∈Sm

[

x±
i,rπ(1)

,
[

x±
i,rπ(2)

,
[· · · ,

[

x±
i,rπ(m)

, x±
j,s

] · · · ]]]= 0

3.3. Remark. — By [23, Lemma 1.9], the relation (Y6) follows from (Y1)–(Y3) and
the special case of (Y6) when r1 = · · · = rm = 0. In turn, the latter automatically holds on
finite-dimensional representations of the algebra defined by relations (Y2) and (Y5) alone
(see, e.g., [13, Prop. 2.7]). Thus, a finite-dimensional representation V of Y�(g) is given
by operators {ξi,r, x±

i,r}i∈I,r∈Z≥0 in End(V) satisfying relations (Y1)–(Y5).

3.4. Assume henceforth that � �= 0, and define ξi(u), x±
i (u) ∈ Y�(g)[[u−1]] by

ξi(u) = 1 + �

∑

r≥0

ξi,ru
−r−1 and x±

i (u) = �

∑

r≥0

x±
i,ru

−r−1

For an associative algebra A, we denote by A[u, v; u−1, v−1]] the algebra of formal
series

∑

r,s ar,su
rvs for which there exist M,N ∈ Z such that ar,s �= 0 implies r ≤ M and

s ≤ N.

Proposition [13, Prop. 2.3]. — The relations (Y1), (Y2)–(Y3), (Y4), (Y5) and (Y6) are re-

spectively equivalent to the following identities in Y�(g)[u, v; u−1, v−1]]
(Y1) For any i, j ∈ I,

[

ξi(u), ξj(v)
]= 0

(Y2) For any i, j ∈ I,

[

ξi,0, x±
j (u)

]= ±diaijx
±
j (u)

(Y3) For any i, j ∈ I, and a = �diaij/2

(u − v ∓ a)ξi(u)x
±
j (v) = (u − v ± a)x±

j (v)ξi(u) ∓ 2ax±
j (u ∓ a)ξi(u)
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(Y4) For any i, j ∈ I, and a = �diaij/2

(u − v ∓ a)x±
i (u)x±

j (v)

= (u − v ± a)x±
j (v)x±

i (u) + �
([

x±
i,0, x±

j (v)
]− [

x±
i (u), x±

j,0

])

(Y5) For any i, j ∈ I

(u − v)
[

x+
i (u), x−

j (v)
]= −δij�

(

ξi(u) − ξi(v)
)

(Y6) For any i �= j ∈ I, m = 1 − aij ,

∑

π∈Sm

[

x±
i (uπ(1)),

[

x±
i (uπ(2)),

[· · · ,
[

x±
i (uπ(m)), x±

j (v)
] · · · ]]]= 0

Remark. — Taking the coefficient of u0 in relation (Y3) gives

�ξi,0x±
j (v) − vx±

j (v) ∓ ax±
j (v) = �x±

j (v)ξi,0 − vx±
j (v) ± ax±

j (v)

Thus we get [ξi,0, x±
j (v)] = ±diaijx

±
j (v) which is relation (Y2).

3.5. Shift automorphism. — The group of translations of the complex plane acts on
Y�(g) by

τa(yr) =
r

∑

s=0

(

r

s

)

ar−sys

where a ∈ C, y is one of ξi, x±
i . In terms of the generating series introduced in 3.4,

τa

(

y(u)
)= y(u − a)

Given a representation V of Y�(g) and a ∈ C, set V(a) = τ ∗
a (V).

3.6. Quantum loop algebra Uq(Lg). — Let q ∈ C× be of infinite order. For any i ∈ I,
set qi = qdi . We use the standard notation for Gaussian integers

[n]q = qn − q−n

q − q−1

[n]q! = [n]q[n − 1]q · · · [1]q

[

n

k

]

q

= [n]q!
[k]q![n − k]q!

The quantum loop algebra Uq(Lg) is the unital, associative C-algebra generated
by elements {	±

i,±r}i∈I,r∈Z≥0 , {X±
i,k}i∈I,k∈Z, subject to the following relations
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(QL1) For any i, j ∈ I, r, s ∈ Z≥0,
[

	±
i,±r,	

±
j,±s

]= 0
[

	±
i,±r,	

∓
j,∓s

]= 0 	±
i,0	

∓
i,0 = 1

(QL2) For any i, j ∈ I, k ∈ Z,

	+
i,0X±

j,k	
−
i,0 = q

±aij

i X±
j,k

(QL3) For any i, j ∈ I, ε ∈ {±} and l ∈ Z

	ε
i,k+1X±

j,l − q
±aij

i X±
j,l 	

ε
i,k+1 = q

±aij

i 	ε
i,kX±

j,l+1 −X±
j,l+1	

ε
i,k

for any k ∈ Z≥0 if ε = + and k ∈ Z<0 if ε = −
(QL4) For any i, j ∈ I and k, l ∈ Z

X±
i,k+1X±

j,l − q
±aij

i X±
j,lX±

i,k+1 = q
±aij

i X±
i,kX±

j,l+1 −X±
j,l+1X±

i,k

(QL5) For any i, j ∈ I and k, l ∈ Z

[

X+
i,k,X−

j,l

]= δij

	+
i,k+l − 	−

i,k+l

qi − q−1
i

where 	±
i,∓k = 0 for any k ≥ 1.

(QL6) For any i �= j ∈ I, m = 1 − aij , k1, . . . , km ∈ Z and l ∈ Z

∑

π∈Sm

m
∑

s=0

(−1)s

[

m

s

]

qi

X±
i,kπ(1)

· · ·X±
i,kπ(s)

X±
j,lX±

i,kπ(s+1)
· · ·X±

i,kπ(m)
= 0

3.7. Remark. — By [13, Lemma 2.12], the relation (QL6) follows from (QL1)–
(QL3) and the special case of (QL6) when k1 = · · · = km = 0. In turn, the latter automati-
cally holds on finite-dimensional representations of the algebra defined by relations (QL2)
and (QL5) alone (see, e.g., [13, Prop. 2.13]). Thus, a finite-dimensional representation V of
Uq(Lg) is given by operators {	±

i,±r,X±
i,k}i∈I,r∈Z≥0,k∈Z in End(V) satisfying relations (QL1)–

(QL5).

3.8. Define 	i(z)
+,X±

i (z)+ ∈ Uq(Lg)[[z−1]] and 	i(z)
−,X±

i (z)− ∈ Uq(Lg)[[z]]
by

	i(z)
+ =

∑

r≥0

	+
i,rz

−r 	i(z)
− =

∑

r≤0

	−
i,rz

−r

X±
i (z)+ =

∑

r≥0

X±
i,r z

−r X±
i (z)− = −

∑

r<0

X±
i,r z

−r
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Proposition [13, Prop. 2.7]. — The relations (QL1), (QL2)–(QL3), (QL4), (QL5), (QL6)

imply the following relations in Uq(Lg)[z,w; z−1,w−1]]
(QL1) For any i, j ∈ I,

[

	i(z)
+,	j(w)+]= 0

(QL2) For any i, j ∈ I,

	+
i,0X±

j (z)+	−
i,0 = q

±aij

i X±
j (z)+

(QL3) For any i, j ∈ I
(

z − q
±aij

i w
)

	i(z)
+X±

j (w)+

= (

q
±aij

i z − w
)

X±
j (w)+	i(z)

+

− (

q
±aij

i − q
∓aij

i

)

q
±aij

i wX±
j

(

q
∓aij

i z
)+

	i(z)
+

(QL4) For any i, j ∈ I
(

z − q
±aij

i w
)

X±
i (z)+X±

j (w)+ − (

q
±aij

i z − w
)

X±
j (w)+X±

i (z)+

= z
(

X±
i,0X±

j (w)+ − q
±aij

i X±
j (w)+X±

i,0

)

+ w
(

X±
j,0X±

i (z)+ − q
±aij

i X±
i (z)+X±

j,0

)

(QL5) For any i, j ∈ I

(z − w)
[

X+
i (z)+,X−

j (w)+]

= δij

qi − q−1
i

(

z	i(w)+ − w	i(z)
+ − (z − w)	−

i,0

)

(QL6) For any i �= j ∈ I, and m = 1 − aij

∑

π∈Sm

m
∑

s=0

(−1)s

[

m

s

]

qi

X±
i (zπ(1))

+ · · ·X±
i (zπ(s))

+X±
j (w)+

·X±
i (zπ(s+1))

+ · · ·X±
i (zπ(m))

+ = 0

3.9. Shift automorphism. — The group C× of dilations of the complex plane acts on
Uq(Lg) by

τα(Yk) = αkYk

where α ∈ C×, Y is one of 	±
i ,X±

i . In terms of the generating series of 3.8, we have

τα

(

Y(z)±)= Y
(

α−1z
)±

Given a representation V of Uq(Lg) and α ∈ C×, we denote τ ∗
α (V) by V(α).
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3.10. Rationality. — The following rationality property is due to Beck–Kac [1] and
Hernandez [15] for Uq(Lg) and to the authors for Y�(g). In the form below, the result
appears in [13, Prop. 3.6].

Proposition.

(i) Let V be a Y�(g)-module on which the operators {ξi,0}i∈I act semisimply with finite-

dimensional weight spaces. Then, for every weight μ of V, the generating series

ξi(u) ∈ End(Vμ)
[[

u−1
]]

and x±
i (u) ∈ Hom(Vμ,Vμ±αi

)
[[

u−1
]]

defined in 3.4 are the expansions at ∞ of rational functions of u. Specifically, let ti,1 =
ξi,1 − �

2 ξ 2
i,0 ∈ Y�(g)

h. Then,

x±
i (u) = 2di�u−1

(

2di ∓ ad(ti,1)

u

)−1

x±
i,0

and

ξi(u) = 1 + [

x+
i (u), x−

i,0

]

(ii) Let V be a Uq(Lg)-module on which the operators {	±
i,0}i∈I act semisimply with finite-

dimensional weight spaces. Then, for every weight μ of V and ε ∈ {±}, the generating

series

	i(z)
± ∈ End(Vμ)

[[

z∓1
]]

and X ε
i (z)± ∈ Hom(Vμ,Vμ+εαi

)
[[

z∓1
]]

defined in 3.8 are the expansions of rational functions 	i(z),X ε
i (z) at z = ∞ and z = 0.

Specifically, let H±
i,±1 = ±	∓

i,0	
±
i,±1/(qi − q−1

i ). Then,

X ε
i (z) =

(

1 − ε
ad(H+

i,1)

[2]qi
z

)−1

X ε
i,0

= −z

(

1 − εz
ad(H−

i,−1)

[2]qi

)−1

X ε
i,−1

and

	i(z) = 	−
i,0 + (

qi − q−1
i

)[

X+
i (z),X−

i,0

]

3.11. Poles of finite-dimensional representations. — By Proposition 3.10, we can define,
for a given V ∈ Repfd(Y�(g)), a subset σ(V) ⊂ C consisting of the poles of the rational
functions ξi(u)

±1, x±
i (u).

Similarly, for any V ∈ Repfd(Uq(Lg)), we define a subset σ(V) ⊂ C× consisting of
the poles of the functions 	i(z)

±1,X±
i (z).
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3.12. The following is a direct consequence of Proposition 3.10 and contour de-
formation. We set

¸
C f = 1

2πι

´
C f .

Corollary.

(i) Let V ∈ Repfd(Y�(g)) and C ⊂ C be a Jordan curve enclosing σ(V).10 Then, the

following holds on V for any r ∈ Z≥0

x±
i,r = 1

�

˛
C

x±
i (u)urdu and ξi,r = 1

�

˛
C
ξi(u)u

rdu

(ii) Let V ∈ Repfd(Uq(Lg)) and C ⊂ C× be a Jordan curve enclosing σ(V) and not enclos-

ing 0. Then, the following holds on V for any k ∈ Z and r ∈ Z>0

X±
i,k =

˛
C
X±

i (z)zk−1dz 	±
i,±r = ±

˛
C
	i(z)z

±r−1dz

and ˛
C
	i(z)

dz

z
= 	+

i,0 − 	−
i,0

3.13. The following result will be needed later.

Lemma. — Let V be a finite-dimensional representation of Y�(g) and i, j ∈ I. If u0 is a pole of

x±
j (u), then u0 ± �diaij

2 are poles of ξi(u)
±1.

Proof. — Consider the relation (Y3) of Proposition 3.4 (here a = �diaij/2).

(3.1) Ad
(

ξi(u)
)

x+
j (v) = u − v + a

u − v − a
x+

j (v) − 2a

u − v − a
x+

j (u − a)

Set v = u + a to get Ad(ξi(u))x
+
j (u + a) = x+

j (u − a). Combining this with Equa-
tion (3.1) above we get:

(3.2) Ad
(

ξi(u)
)−1

x+
j (v) = u − v − a

u − v + a
x+

j (v) + 2a

u − v + a
x+

j (u + a)

Differentiating (3.2) with respect to v and then setting v = u − a yields

(3.3) 2a
(

Ad
(

ξi(u)
))−1

(

d

du
x+

j (u − a)

)

= x+
j (u + a) − x+

j (u − a)

10 By a Jordan curve, we shall mean a disjoint union of simple, closed curves the inner domains of which are pairwise
disjoint.
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Differentiating (3.1) with respect to u, and combining equations (3.2), (3.3) with the
following fact

d

du
Ad

(

ξi(u)
)

x+
j (v) = Ad

(

ξi(u)
)[

ξi(u)
−1ξ ′

i (u), x+
j (v)

]

shows that

[

ξi(u)
−1ξ ′

i (u), x+
j (v)

]=
(

1
u − v + a

− 1
u − v − a

)

x+
j (v)(3.4)

+ 1
u − v − a

x+
j (u − a) − 1

u − v + a
x+

j (u + a)

Thus, if x+
j (v) has a pole at u0 of order N, then multiplying both sides by (v − u0)

N

and letting v → u0 we get:

[

ξi(u)
−1ξ ′

i (u),X
]=

(

1
u − u0 + a

− 1
u − u0 − a

)

X

where X = (v − u0)
Nx+

j (v)|v=u0 . Hence the logarithmic derivative of ξi(u) has poles at
u0 ± a, which implies that u0 ± a must be poles of ξi(u)

±1. The argument for x−
j (v) is same

as above, upon replacing a by −a. �

4. The Drinfeld coproduct

In this section, we review the definition of the deformed Drinfeld coproduct on
Uq(Lg) following [14, 15]. We then express it in terms of contour integrals, and use these
to determine the poles of the coproduct as a function of the deformation parameter. By
degenerating the integrals, we obtain a deformed Drinfeld coproduct for the Yangian
Y�(g). We also point out that these coproducts define a meromorphic tensor product on
the category of finite-dimensional representations of Uq(Lg) and Y�(g).

4.1. Drinfeld coproduct on Uq(Lg). — Let V,W ∈ Repfd(Uq(Lg)). Twisting Drin-
feld’s coproduct on Uq(Lg) by the C×-action on the first factor yields an action of Uq(Lg)
on V((ζ−1)) ⊗W , where ζ is a formal variable [14, 15]. This action is given on the gen-
erators of Uq(Lg) by11

	±
i,±m −→

∑

p1+p2=m

ζ±p1	±
i,±p1

⊗ 	±
i,±p2

11 We use a different convention than [14, 15]. The coproduct �
(H)

ζ given in [14, 15] yields an action on V⊗W((ζ ))

obtained by twisting the Drinfeld coproduct by the C×-action on the second tensor factor. The above action is equal to
�

(H)

ζ−1 (τζ (X)).
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X+
i,k −→ ζ kX+

i,k ⊗ 1 +
∑

l≥0

ζ−l	−
i,−l ⊗X+

i,k+l

X−
i,k −→

∑

l≥0

ζ k−lX−
i,k−l ⊗ 	+

i,l + 1 ⊗X−
i,k

Hernandez proved that the above formulae are the Laurent expansions at ζ = ∞ of
a family of actions of Uq(Lg) on V ⊗ W the matrix coefficients of which are rational
functions of ζ [15, Lemma 3.10].

4.2. Let V,W ∈ Repfd(Uq(Lg)) be as above, and σ(V), σ (W) ⊂ C× be their sets
of poles (see 3.11). Let ζ ∈ C× be such that ζσ (V) and σ(W) are disjoint, and define an
action of the generators of Uq(Lg) on V ⊗W as follows

�ζ

(

	±
i,±m

)=
∑

p1+p2=m

ζ±p1	±
i,±p1

⊗ 	±
i,±p2

�ζ

(

X+
i,k

)= ζ kX+
i,k ⊗ 1 +

˛
C2

	i

(

ζ−1w
)⊗X+

i (w)wk−1dw

�ζ

(

X−
i,k

)=
˛

C1

X−
i

(

ζ−1w
)⊗ 	i(w)wk−1dw + 1 ⊗X−

i,k

where

• C1,C2 ⊂ C× are Jordan curves which do not enclose 0.
• C1 encloses ζσ (V) and none of the points in σ(W).
• C2 encloses σ(W) and none of the points in ζσ (V).

The above operators are holomorphic functions of ζ ∈ C× \ σ(W)σ (V)−1. The
corresponding generating series �ζ(	i(z)

±),�ζ (X ε
i (z)±) are the expansions at z = ∞,0

of the End(V ⊗W)-valued holomorphic functions

�ζ

(

	i(z)
)= 	i

(

ζ−1z
)⊗ 	i(z)

�ζ

(

X+
i (z)

)=X+
i

(

ζ−1z
)⊗ 1 +

˛
C2

zw−1

z − w
	i

(

ζ−1w
)⊗X+

i (w) dw

�ζ

(

X−
i (z)

)=
˛

C1

zw−1

z − w
X−

i

(

ζ−1w
)⊗ 	i(w) dw + 1 ⊗X−

i (z)

where the integrals are understood to mean the function of z defined for z outside
of C1,C2. Throughout this paper, inside/outside of a Jordan curve C refers to the
bounded/unbounded components of the complement C \ C, and thus they exclude C
itself. We shall prove below that their dependence in both ζ and z is rational.
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4.3.

Theorem.

(i) The Laurent expansion of �ζ at ζ = ∞ is given by the deformed Drinfeld coproduct of

Section 4.1.

(ii) �ζ defines an action of Uq(Lg) on V ⊗ W . The resulting representation is denoted by

V ⊗ζ W .

(iii) The action of Uq(Lg) on V ⊗ζ W is a rational function of ζ , with poles contained in

σ(W)σ (V)−1.

(iv) The identification of vector spaces

(V1 ⊗ζ1 V2) ⊗ζ2 V3 = V1 ⊗ζ1ζ2 (V2 ⊗ζ2 V3)

intertwines the action of Uq(Lg).
(v) If V ∼= C is the trivial representation of Uq(Lg), then

V ⊗ζ W =W and W ⊗ζ V =W(ζ )

(vi) The following holds for any ζ, ζ ′ ∈ C×

V ⊗ζ ζ ′ W = V(ζ )⊗ζ ′ W and V
(

ζ ′)⊗ζ W
(

ζ ′)= (V ⊗ζ W)
(

ζ ′)

(vii) The following holds for any ζ ∈ C×

σ(V ⊗ζ W) ⊆ (

ζσ (V)
)∪ σ(W)

Proof. — (i) Expanding �ζ(	
±
i,m) and �ζ(X±

i,k) as Laurent series in ζ−1 yields the
following for any m ∈ Z≥0 and k ∈ Z

�ζ

(

	±
i,±m

)=
m
∑

n=0

ζ±n	±
i,±n ⊗ 	±

±(m−n)

�ζ

(

X+
i,k

)= ζ kX+
i,k ⊗ 1 +

∑

l≥0

ζ−l

˛
C2

	−
i,−l ⊗X+

i (w)wk+l−1dw

= ζ kX+
i,k ⊗ 1 +

∑

l≥0

ζ−l	−
i,−l ⊗X+

i,k+l

�ζ

(

X−
i,k

)=
˛

ζ−1C1

X−
i (w) ⊗ 	i(ζw)ζ kwk−1dw + 1 ⊗X−

i,k

=
∑

l≥0

ζ k−l

˛
ζ−1C1

X−
i (w) ⊗ 	+

i,lw
k−l−1dw + 1 ⊗X−

i,k

=
∑

l≥0

ζ k−lX−
i,k−l ⊗ 	+

i,l + 1 ⊗X−
i,k
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where the third and sixth equalities follow by Corollary 3.12, and the fourth by a change
of variables. Note that C1 is assumed to enclose ζσ (V1), thus ζ−1C1 in the computation
of �ζ(X−

i,k) above encloses σ(V1).
(ii) By Remark 3.7, it suffices to check the relations (QL1)–(QL5). These follow

from (i) and [14, Prop. 6.3], since it is sufficient to prove them when ζ is a formal variable.
Alternatively, a direct proof can be given along the lines of Theorem 4.6 below.

(iii) The rationality of V⊗ζ W follows from (i) and [15, Lemma 3.10]. Alternatively,
let {wj}j∈J ⊂ C× be the poles of X+

i (w) on W , and

X+
i (w) =X+

i,0 +
∑

j∈J,n≥1

X+
i;j,n(w − wj)

−n

its corresponding partial fraction decomposition. Since C2 encloses all wj , and
	i(ζ

−1w)wk−1 is regular inside C2, we get

�ζ

(

X+
i,k

)= ζ kX+
i,k ⊗ 1 +

∑

j,n

∂(n−1)
w

(

	i

(

ζ−1w
)

wk−1
)∣

∣

w=wj
⊗X+

i;j,n

where ∂(p) = ∂p/p!. This is clearly a rational function of ζ , whose poles are a subset of
the points ζ = wjw

′
k
−1, where w′

k is a pole of 	i(w) on V . A similar argument shows that
�ζ(X−

i,k) is also a rational function whose poles are contained in σ(W)σ (V)−1.
(iv) Follows from (i) and [15, Lemma 3.4].
(v), (vi) and (vii) are clear. �

4.4. Degeneration. — The formulae for the Drinfeld coproduct on Y�(g) given in
4.5 below can be formally obtained by degenerating those for the Drinfeld coproduct
of Uq(Lg) given in 4.2. This amounts to setting z = e2πιεu, w = e2πιεv , and letting ε → 0.
Under this limit, the 1-form zw−1

z−w
dw goes to dv

u−v
. In addition, we replace the trigonometric

functions 	i(z),X±
i (z) coming from Uq(Lg) by their rational counterparts ξi(u), x±

i (u).
This method is solely a heuristic, and a proof that the formulae given in 4.5 satisfy the
relations of the Yangian Y�(g) is provided in 4.7–4.10.

4.5. Drinfeld coproduct on Y�(g). — Let now V,W ∈ Repfd(Y�(g)), and σ(V),

σ (W) ⊂ C be their sets of poles. Let s ∈ C be such that σ(V) + s and σ(W) are dis-
joint, and define an action of the generators of Y�(g) on V ⊗ W via

�s

(

ξi(u)
)= ξi(u − s) ⊗ ξi(u)

�s

(

x+
i (u)

)= x+
i (u − s) ⊗ 1 +

˛
C2

1
u − v

ξi(v − s) ⊗ x+
i (v) dv

�s

(

x−
i (u)

)=
˛

C1

1
u − v

x−
i (v − s) ⊗ ξi(v) dv + 1 ⊗ x−

i (u)

where
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• C2 encloses σ(W) and none of the points in σ(V) + s.
• C1 encloses σ(V) + s and none of the points in σ(W).
• The integrals are understood to mean the holomorphic functions of u they de-

fine in the domain where u is outside of C1,C2.

In terms of the generators {ξi,r, x±
i,r}, the above formulae read

�s(ξi,r) = τs(ξi,r) ⊗ 1 + �

∑

p1+p2=r−1

τs(ξi,p1) ⊗ ξi,p2 + 1 ⊗ ξi,r

�s

(

x+
i,r

)= τs

(

x+
i,r

)⊗ 1 + �
−1

˛
C2

ξi(v − s) ⊗ x+
i (v)vrdv

�s

(

x−
i,r

)= �
−1

˛
C1

x−
i (v − s) ⊗ ξi(v)vrdv + 1 ⊗ x−

i,r

4.6.

Theorem.

(i) The formulae in 4.5 define an action of Y�(g) on V ⊗ W. The resulting representation is

denoted by V ⊗s W.

(ii) The action of Y�(g) on V ⊗s W is a rational function of s, with poles contained in

σ(W) − σ(V).

(iii) The identification of vector spaces

(V1 ⊗s1 V2) ⊗s2 V3 = V1 ⊗s1+s2 (V2 ⊗s2 V3)

intertwines the action of Y�(g).

(iv) If V ∼= C is the trivial representation of Y�(g), then

V ⊗s W = W and W ⊗s V = W(s)

(v) The following holds for any s, s′ ∈ C,

V⊗s+s′ W = V(s)⊗s′ W and V
(

s′)⊗s W
(

s′)= (V⊗s W)
(

s′)

(vi) The following holds for any s ∈ C,

σ(V ⊗s W) ⊂ (

σ(V) + s
)∪ σ(W)

Proof. — (ii) is proved as in Theorem 4.3, and (iv)–(vi) are clear.
To prove (i), it suffices by Remark 3.3 to check that relations (Y1)–(Y5) hold on

V ⊗s W. By (v), we may assume that σ(V) ∩ σ(W) = ∅, and that s = 0. We choose
the contours C1 and C2 enclosing σ(V) and σ(W) respectively, such that they do not
intersect. The relation (Y1) holds trivially. The relations (Y2) and (Y3) are checked in 4.7,
(Y4) in 4.8 and (Y5) in 4.9.

(iii) is proved in 4.10. �
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4.7. Proof of (Y2) and (Y3). — We prove these relations for the + case only. By
Proposition 3.4 and Remark 3.4, it is equivalent to show that �0 preserves the relation

ξi(u1)x
+
j (u2)ξi(u1)

−1 = u1 − u2 + a

u1 − u2 − a
x+

j (u2) − 2a

u1 − u2 − a
x+

j (u1 − a)

where a = �diaij/2. It suffices to prove this for u1, u2 large enough, and we shall assume
that u2 lies outside of C2, and that u1 lies outside of C2 + a.

Applying �0 to the left-hand side gives

ξi(u1)x
+
j (u2)ξi(u1)

−1 ⊗ 1 +
˛

C2

1
u2 − v

ξi(v)⊗ ξi(u1)x
+
j (v)ξi(u1)

−1 dv

= ξi(u1)x
+
j (u2)ξi(u1)

−1 ⊗1+
˛

C2

u1 − v + a

(u2 −v)(u1 −v − a)
ξi(v) ⊗ x+

j (v) dv

−
˛

C2

2a

(u2 − v)(u1 − v − a)
ξi(v) ⊗ x+

j (u1 − a) dv

where the third summand is equal to zero since the integrand is regular inside C2.
Applying now �0 to the right-hand side yields

ξi(u1)x
+
j (u2)ξi(u1)

−1 ⊗ 1

+ 1
u1 − u2 − a

˛
C2

(

u1 − u2 + a

u2 − v
− 2a

u1 − a − v

)

ξi(v) ⊗ x+
j (v) dv

The equality of the two expressions now follows from the identity

u1 − u2 + a

u2 − v
− 2a

u1 − a − v
= (u1 − u2 − a)(u1 + a − v)

(u2 − v)(u1 − a − v)

4.8. Proof of (Y4). — We check this relation for the + case only. We need to prove
that �0 preserves the relation

(4.1) x+
i,r+1x+

j,s − x+
i,rx

+
j,s+1 − ax+

i,rx
+
j,s = x+

j,sx
+
i,r+1 − x+

j,s+1x+
i,r + ax+

j,sx
+
i,r

where a = �diaij/2. Note that �0(x
+
i,mx+

j,n) is equal to

x+
i,mx+

j,n ⊗ 1 + 1
�

˛
C2

vnx+
i,mξj(v) ⊗ x+

j (v) dv + 1
�

˛
C2

vmξi(v)x+
j,n ⊗ x+

i (v) dv

+ 1
�2

"
C2

vm
1 vn

2ξi(v1)ξj(v2) ⊗ x+
i (v1)x

+
j (v2) dv1dv2
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We now apply �0 to both sides of relation (4.1), and consider the four summands of
�0(x

+
i,mx+

j,n) separately.
The first summand of �0 of the left and right-hand sides of (4.1) are, respectively

(

x+
i,r+1x+

j,s − x+
i,rx

+
j,s+1 − ax+

i,rx
+
j,s

)⊗ 1
(

x+
j,sx

+
i,r+1 − x+

j,s+1x+
i,r + ax+

j,sx
+
i,r

)⊗ 1

which cancel because of (4.1).
The second summand of the left-hand side and the third summand of the right-hand side

are, respectively

1
�

˛
C2

vs
(

x+
i,r+1 − vx+

i,r − ax+
i,r

)

ξj(v) ⊗ x+
j (v) dv

1
�

˛
C2

vsξj(v)
(

x+
i,r+1 − vx+

i,r + ax+
i,r

)⊗ x+
j (v) dv

which cancel because of the following version of (Y2) and (Y3)

(

x+
i,r+1 − vx+

i,r − ax+
i,r

)

ξj(v) = ξj(v)
(

x+
i,r+1 − vx+

i,r + ax+
i,r

)

Similarly the third summand of the left-hand side and the second summand of the right-
hand side cancel.

The fourth summands of the left and right-hand sides of (4.1) are, respectively

1
�2

"
C2

vr
1v

s
2(v1 − v2 − a)ξi(v1)ξj(v2) ⊗ x+

i (v1)x
+
j (v2) dv1dv2

1
�2

"
C2

vr
1v

s
2(v1 − v2 + a)ξj(v2)ξi(v1) ⊗ x+

j (v2)x
+
i (v1) dv1dv2

By (Y4), their difference is equal to

1
�

"
C2

vr
1v

s
2 ξi(v1)ξj(v2) ⊗ ([

x+
i,0, x+

j (v2)
]− [

x+
i (v1), x+

j,0

])

dv1dv2

which is equal to zero because the first (resp. second) summand is regular when v1 (resp.
v2) lies inside C2.

4.9. Proof of (Y5). — We need to check that �0 preserves the relation

[

x+
i (u1), x−

j (u2)
]= −�δij

ξi(u1) − ξi(u2)

u1 − u2
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As in Section 4.7 above, it suffices to prove this for u1, u2 large enough, and we shall
assume that u1, u2 lie outside of C1,C2 respectively. Applying �0 to the left-hand side
yields

˛
C1

1
u2 − v

[

x+
i (u1), x−

j (v)
]⊗ ξj(v) dv

+
˛

C2

1
u1 − v

ξi(v) ⊗ [

x+
i (v), x−

j (u2)
]

dv +B

where

B =
˛

C1

˛
C2

1
(u1 − v2)(u2 − v1)

[

ξi(v2) ⊗ x+
i (v2), x−

j (v1) ⊗ ξj(v1)
]

dv2dv1

We shall prove below that B = 0. Thus, by relation (Y5) the above is equal to zero
if i �= j. If i = j, it is equal to

−
˛

C1

�

(u2 − v)(u1 − v)

(

ξi(u1) − ξi(v)
)⊗ ξi(v) dv

−
˛

C2

�

(u1 − v)(v − u2)
ξi(v) ⊗ (

ξi(v) − ξi(u2)
)

dv

=
˛

C1�C2

�

(u1 − v)(u2 − v)
ξi(v) ⊗ ξi(v) dv

= �

u1 − u2

(

ξi(u2) ⊗ ξi(u2) − ξi(u1) ⊗ ξi(u1)
)

where the first equality follows because ξi(u1)⊗ ξi(v) (resp. ξi(v)⊗ ξi(u2)) is regular when
v is inside C1 (resp. C2), and the second by deformation of contours and the fact that
ξi(v) ⊗ ξi(v) is regular outside C1 � C2.

Proof that B = 0. — We shall need the following variant of relation (Y3) of Proposi-
tion 3.4.

(4.2) (u − v)
[

ξi(u), x±
j (v)

]= ±a
{

ξi(u), x±
j (v) − x±

j (u)
}

where a = �diaij/2 and {x, y} = xy + yx. The integrand of B can be simplified in two
different ways. First we write

[

ξi(v2) ⊗ x+
i (v2), x−

j (v1) ⊗ ξj(v1)
]

= [

ξi(v2), x−
j (v1)

]⊗ x+
i (v2)ξj(v1) + x−

j (v1)ξi(v2) ⊗ [

x+
i (v2), ξj(v1)

]
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Using (4.2), we get

B =
˛

C1

˛
C2

a

(u1 − v2)(u2 − v1)(v1 − v2)

× ({

ξi(v2), x−
j (v1) − x−

j (v2)
}⊗ x+

i (v2)ξj(v1)

− x−
j (v1)ξi(v2) ⊗ {

ξj(v1), x+
i (v2) − x+

i (v1)
})

dv2dv1

=
˛

C1

˛
C2

a

(u1 − v2)(u2 − v1)(v1 − v2)

({

ξi(v2), x−
j (v1)

}⊗ x+
i (v2)ξj(v1)

− x−
j (v1)ξi(v2) ⊗ {

ξj(v1), x+
i (v2)

})

dv2dv1

=
˛

C1

˛
C2

a

(u1 − v2)(u2 − v1)(v1 − v2)

(

ξi(v2)x
−
j (v1) ⊗ x+

i (v2)ξj(v1)

− x−
j (v1)ξi(v2) ⊗ ξj(v1)x

+
i (v2)

)

dv2dv1

where the second equality follows from the fact that {ξi(v2), x−
j (v2)} ⊗ x+

i (v2)ξj(v1) (resp.
x−

j (v1)ξi(v2) ⊗ {ξj(v1), x+
i (v1)}) is regular when v1 is inside C1 (resp. v2 is inside C2).

Now if we write instead
[

ξi(v2) ⊗ x+
i (v2), x−

j (v1) ⊗ ξj(v1)
]

= ξi(v2)x
−
j (v1) ⊗ [

x+
i (v2), ξj(v1)

]+ [

ξi(v2), x−
j (v1)

]⊗ ξj(v1)x
+
i (v2)

and use relation (4.2) as before, we obtain

B =
˛

C1

˛
C2

−a

(v1 − v2)(u1 − v2)(u2 − v1)

(

ξi(v2)x
−
j (v1) ⊗ x+

i (v2)ξj(v1)

− x−
j (v1)ξi(v2) ⊗ ξj(v1)x

+
i (v2)

)

dv2dv1

Thus B = −B, whence B = 0. �

4.10. Coassociativity. — We need to show that the generators of Y�(g) act by the
same operators on

(V1 ⊗s1 V2) ⊗s2 V3 and V1 ⊗s1+s2 (V2 ⊗s2 V3)

The action of ξi(u) on both modules is given by ξi(u − s1 − s2) ⊗ ξi(u − s2) ⊗ ξi(u).
To compute the action of x+

i (u), we shall assume that s1 and s2 are such that
σ(V1) + s1 + s2, σ (V2) + s2 and σ(V3) are all disjoint. By (vi), this implies in particu-
lar that σ(V1 ⊗s1 V2) + s2 and σ(V3) are disjoint, and that so are σ(V1) + s1 + s2 and
σ(V2 ⊗s2 V3), so that the above tensor products are defined.
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Under these assumptions, the action of x+
i (u) on (V1 ⊗s1 V2) ⊗s2 V3 is given by

�s1

(

x+
i (u − s2)

)⊗ 1 +
˛

C3

1
u − v3

�s1

(

ξi(v3 − s2)
)⊗ x+

i (v3) dv3

= x+
i (u − s2 − s1) ⊗ 1 ⊗ 1

+
˛

C2

1
u − s2 − v2

ξi(v2 − s1) ⊗ x+
i (v2) ⊗ 1 dv2

+
˛

C3

1
u − v3

ξi(v3 − s2 − s1) ⊗ ξi(v3 − s2) ⊗ x+
i (v3) dv3

where C3 encloses σ(V3) and none of the points of σ(V1) + s1 + s2 and σ(V2) + s2, C2

encloses σ(V2) and none of the points of σ(V1) + s1, and u is assumed to be outside of
C3 and C2 + s2.

The action of x+
i (u) on V1 ⊗s1+s2 (V2 ⊗s2 V3) is given by

x+
i (u − s1 − s2) ⊗ 1 ⊗ 1

+
˛

C23

1
u − v23

ξi(v23 − s1 − s2) ⊗ �s2

(

x+
i (v23)

)

dv23

= x+
i (u − s1 − s2) ⊗ 1 ⊗ 1

+
˛

C23

1
u − v23

ξi(v23 − s1 − s2) ⊗ x+
i (v23 − s2) ⊗ 1 dv23

+
˛

C23

˛
C′

3

1
u − v23

1
v23 − v′

3

ξi(v23 − s1 − s2) ⊗ ξ
(

v′
3 − s2

)

⊗ x+
i

(

v′
3

)

dv′
3dv23

where C23 encloses σ(V2) + s2 ∪ σ(V3) and none of the points of σ(V1) + s1 + s2, C′
3

is chosen inside C23 and encloses σ(V3) and none of the points of σ(V2) + s2, and u is
assumed to be outside of C23.

Since the singularities of the first integrand which are contained in C23 lie in
σ(V2) + s2, the corresponding integral is equal to˛

C′
2

1
u − v′

2

ξi

(

v′
2 − s1 − s2

)⊗ x+
i

(

v′
2 − s2

)⊗ 1 dv′
2

where C′
2 contains σ(V2) + s2 and none of the points of σ(V1) + s1 + s2. On the other

hand, integrating in v23 in the second integral yields˛
C′

3

1
u − v′

3

ξi

(

v′
3 − s1 − s2

)⊗ ξ
(

v′
3 − s2

)⊗ x+
i

(

v′
3

)

dv′
3

so that the two actions of x+
i (u) agree. The proof for x−

i (u) is similar.
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5. The commutative R-matrix of the Yangian

In this section, we construct the commutative part R0(s) of the R-matrix of
the Yangian, and show that it defines meromorphic commutativity constraints on
Repfd(Y�(g)), when the latter is equipped with the Drinfeld tensor product defined in
Section 4.

A conjectural formula expressing R0(s) as a formal infinite product with values in
the double Yangian DY�(g) was given by Khoroshkin–Tolstoy [21, Thm. 5.2]. We review
their formula in Sections 5.1–5.2, and outline our own construction in 5.3. Our start-
ing point is the observation that R0(s) formally satisfies an additive difference equation
whose coefficient matrix A(s) we show to be a rational function on finite-dimensional
representations of Y�(g). By taking the left and right canonical fundamental solutions of
this equation, we construct two regularisations R0,±(s) of R0(s) which are meromorphic
functions of the parameter s, and then show that they have the required intertwining
properties with respect to the Drinfeld coproduct.

Note that Sections 5.2 and 5.3 are included solely to motivate our construction,
and that the definition of R0,±(s) and the proofs of its properties are independent of the
results of [21]. In particular, we do not work with the double Yangian.

5.1. The T-Cartan matrix of g. — Let A = (aij) be the Cartan matrix of g and B =
(bij) its symmetrisation, where bij = diaij . Let T be an indeterminate, and let B(T) =
([bij]T) ∈ GLI(C[T±1]) the corresponding matrix of T-numbers. Then, there exists an
integer l = mh∨, which is a multiple of the dual Coxeter number h∨ of g, and is such that

(5.1) B(T)−1 = 1
[l]T

C(T)

where the entries of C(T) are Laurent polynomials in T with positive integer coeffi-
cients.12 We denote the entries of the matrix C(T) by cij(T) = ∑

r∈Z c
(r)

ij Tr , and note that
cji(T) = cij(T) = cij(T−1).

5.2. The Khoroshkin–Tolstoy construction. — The starting point of [21] is a conjectural
presentation of the Drinfeld double DY�(g) of the Yangian Y�(g). DY�(g) is generated
by {ξi,r, x±

i,r}i∈I,r∈Z≥0 and {ξi,r, x±
i,r}i∈I,r∈Z<0 , where the first are the generators of Y�(g). We

will not need the complete presentation of DY�(g). For our purposes, it is sufficient to
know that DY�(g) contains the following two sets of commuting elements: {ξi,r}i∈I,r∈Z≥0

and {ξi,r}i∈I,r∈Z<0 . Let Y±
0 ⊂ DY�(g) be the subalgebras they generate. The Hopf pairing

12 This result is stated without proof in [21, p. 391], and proved for g simply-laced in [16, Prop. 2.1]. We give a
proof in Appendix A, which also corrects the values of the multiple m tabulated in [21] for the Cn and Dn series. With those
corrections, the value of m for any g is the ratio of the squared length of long roots and short ones.
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〈−,−〉 on DY�(g) restricts to a perfect pairing Y+
0 ⊗Y−

0 → C, and the commutative part
of the R-matrix of Y�(g) is given by

(5.2) R0 = exp

⎛

⎝

∑

i∈I,r∈Z≥0

a+
i,r ⊗ a−

i,−r−1

⎞

⎠

where {a+
i,r}i∈I,r∈Z≥0 and {a−

i,r}i∈I,r∈Z<0 are generators of Y+
0 ,Y−

0 respectively, which are
primitive modulo elements which pair trivially with Y±

0 , and such that 〈a+
i,r, a−

j,−s−1〉 =
δijδrs.

Constructing these generators amounts to finding formal power series

a+
i (u) =

∑

r≥0

a+
i,ru

−r−1 ∈ Y+
0

[[

u−1
]]

and a−
i (v) =

∑

r<0

a−
i,rv

−r−1 ∈ Y−
0 [[v]]

such that 〈a+
i (u), a−

j (v)〉 = δij/(u − v). To this end, introduce the generating series

ξ+
i (u) = 1 + �

∑

r≥0

ξi,ru
−r−1 and ξ−

i (v) = 1 − �

∑

r<0

ξi,rv
−r−1

Then, by definition of DY�(g), we have

〈

ξ+
i (u), ξ−

j (v)
〉= u − v + a

u − v − a
∈ C

[[

u−1, v
]]

where a = �bij/2. Define now

(5.3) t+i (u) = log
(

ξ+
i (u)

) ∈ Y+
0

[[

u−1
]]

and t−i (v) = log
(

ξ−
i (v)

) ∈ Y−
0 [[v]]

Then, it follows that

〈

t+i (u), t−j (v)
〉= log

(

u − v + a

u − v − a

)

Indeed, ξ±
i (u) are group-like modulo terms which pair trivially with Y+

0 ,Y−
0 , and if a, b

are primitive elements of a Hopf algebra endowed with a Hopf pairing 〈−,−〉, then
〈ea, eb〉 = e〈a,b〉. Differentiating with respect to u yields

〈

d

du
t+i (u), t−j (v)

〉

= 1
u − v + a

− 1
u − v − a

Let T be the shift operator acting on functions of v as Tf (v) = f (v − �/2). Then,
the above identity may be rewritten as

〈

d

du
t+i (u), t−j (v)

〉

= (

Tbij − T−bij
) 1

u − v
= (

T − T−1
)

B(T)ij

1
u − v
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where B(T) is the matrix introduced in 5.1. It follows that if D(T) is an I × I matrix with
entries in C[[T,T−1]], then

∑

k

D(T)jk

〈

d

du
t+i (u), t−k (v)

〉

= (

T − T−1
)(

D(T)B(T)
)

ji

1
u − v

By (5.1), choosing D(T) = (Tl − T−l)−1C(T), and setting

(5.4) a+
i (u) = d

du
t+i (u) and a−

j (v) =
∑

k∈I

(

Tl − T−l
)−1

C(T)jk t
−
k (v)

gives the sought for generators, provided one can interpret (Tl − T−l)−1. This can be
done by expanding in powers of Tl or of T−l , and leads to two distinct formal expressions
for R0 [21, (5.27)–(5.28)].

5.3. To make sense of the above construction of R0 on the tensor product V1 ⊗
V2 of two finite-dimensional representations of Y�(g), we proceed as follows.

(1) By 3.10, a+
i (u) acting on V1:

a+
i (u) = d

du
t+i (u) = ξ+

i (u)′ξ+
i (u)−1

is a rational End(V1)-valued function of u, regular near ∞.
(2) If a−

j (v) defined by (5.4) can be shown to be a meromorphic function of v, we
may interpret the sum over r in (5.2) as the contour integral

¸
C a+

i (u)⊗a−
i (u) du,

where C encloses all poles of a+
i (u) and none of those of a−

i (u).
(3) The action of R0 on V1(s) ⊗ V2 would then be given by

R0(s) = exp

(

∑

i

˛
C+s

a+
i (u − s) ⊗ a−

i (u) du

)

= exp

(

∑

i

˛
C

a+
i (u) ⊗ a−

i (u + s) du

)

where C encloses all poles of a+
i (u) on V1 and none of those of a−

i (u) on V2.
(4) We show in 5.4 that, on any finite-dimensional representation of Y�(g), t+i (u)

is the expansion near u = ∞ of a meromorphic function of u defined on the
complement of a compact cut-set 0 ∈ X ⊂ C, and interpret t−i (v) as the cor-
responding analytic continuation of t+i (u). This resolves in particular the am-
biguity in the definition (5.3) of t−i (v) as a formal power series in v, since the
constant term of ξ−

i (v) is not equal to 1, and allows to apply the shift operator
T to t−j (v), since T does not act on formal power series of v. Moreover, since
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we work with Y�(g), we do not have the operators {ξi,r}i∈I,r∈Z<0 at our disposal.
This makes the reinterpretation of t−i (v) as a meromorphic function essential
for our purposes.

(5) To interpret a−
j (v), we note that it formally satisfies the difference equation

a−
j (v + l�) − a−

j (v) = b−
j (v), where

b−
j (v) = −

∑

k∈I

T−lC(T)jk t
−
k (v) = −

∑

k∈I,r∈Z

c
(r)

jk t−k

(

v + (l + r)
�

2

)

and we used the fact that C(T) = C(T−1). This implies that R0(s) formally
satisfies

(5.5) R0(s + l�)R0(s)−1 = exp

(

∑

i

˛
C

a+
i (u) ⊗ b−

i (u + s) du

)

(6) We show in 5.5–5.7 that the operator A(s) given by the right-hand side of (5.5)
is a rational function of s such that A(∞) = 1. We then define two regulari-
sations R0,±(s) of R0(s) as the canonical right and left fundamental solutions
of the difference equation (5.5), and show in 5.9 that they define meromor-
phic commutativity constraints on Repfd(Y�(g)) endowed with the deformed
Drinfeld coproduct.

5.4. Matrix logarithms. — We shall need the following result

Proposition. — Let V be a complex, finite-dimensional vector space, and ξ : C → End(V) a

rational function such that

• ξ(∞) = 1.

• [ξ(u), ξ(v)] = 0 for any u, v ∈ C.

Let σ(ξ) ⊂ C be the set of poles of ξ(u)±1, and define the cut-set X(ξ) by

(5.6) X(ξ) =
⋃

a∈σ(ξ)

[0, a]

where [0, a] is the line segment joining 0 and a. Then, there is a unique single-valued, holomorphic

function t(u) = log(ξ(u)) : C \ X(ξ) → End(V) such that

(5.7) exp
(

t(u)
)= ξ(u) and t(∞) = 0

Moreover, [t(u), t(v)] = 0 for any u, v ∈ C, and t(u)′ = ξ(u)−1ξ ′(u).



MEROMORPHIC TENSOR EQUIVALENCE 299

Proof. — Equation (5.7) uniquely defines t(u) as a holomorphic function near
u = ∞. To continue t(u) meromorphically, note first that the semisimple and unipo-
tent factors ξS(u), ξU(u) of the multiplicative Jordan decomposition of ξ(u) are rational
functions of u since [ξ(u), ξ(v)] = 0 for any u, v (see e.g., [13, Lemma 4.12]). Thus,

tN(u) = log
(

ξU(u)
)=

∑

k≥1

(−1)k−1 (ξU(u) − 1)k

k

is a well-defined rational function of u ∈ C whose poles are contained in those of ξ(u).
To define log(ξS(u)) consistently, note that the eigenvalues of ξ(u) are rational func-

tions of the form
∏

j(u − aj)(u − bj)
−1. Since, for a ∈ C×, the function log(1 − au−1) is

single-valued on the complement of the interval [0, a], where log is the standard determi-
nation of the logarithm, we may define a single-valued, holomorphic function log(ξS(u))

on the complement of the intervals [0, a], where a ranges over the (non-zero) zeros and
poles of the eigenvalues of ξ(u).

Finally, we set

t(u) = tN(u) + tS(u)

The fact that [t(u), t(v)] = 0 is clear from the construction, or from the fact that it clearly
holds for u, v near ∞. Finally, the derivative of t(u) can be computed by differentiating
the identity exp(t(u)) = ξ(u), and using the formula for the left-logarithmic derivative of
the exponential function (see, e.g., [10]). �

Definition. — If V is a finite-dimensional representation of Y�(g), and ξi(u) is the rational

function ξi(u) = 1 + �
∑

r≥0 ξi,ru
−r−1 given by Proposition 3.10, the corresponding logarithm will be

denoted by ti(u).

5.5. The operator AV1,V2(s). — Let V1,V2 be two finite-dimensional representa-
tions of Y�(g). Let C1 be a contour enclosing the set of poles of the operators ξi(u)

±1 on
V1, and consider the following operator on V1 ⊗ V2

AV1,V2(s) = exp

⎛

⎜

⎝−
∑

i,j∈I
r∈Z

c
(r)

ij

˛
C1

t′i (v) ⊗ tj

(

v + s + (l + r)�

2

)

dv

⎞

⎟

⎠

where s ∈ C is such that tj(v + s + �(l + r)/2) is an analytic function of v within C1 for
every j ∈ I and r ∈ Z such that c

(r)

ij �= 0 for some i ∈ I.
Let 
h ∈ h⊗ h ⊂ Y�(g) ⊗ Y�(g) be the Cartan part of the Casimir tensor. Explic-

itly,

(5.8) 
h =
∑

i∈I

dihi ⊗ �∨
i =

∑

i∈I

�∨
i ⊗ dihi
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where dihi = ξi,0, and �∨
i are the fundamental coweights, which are defined by

(�∨
i , djhj) = δij . By definition of the bilinear form (·, ·) on h × h, we have �∨

i =
∑

j∈I(B
−1)ijdjhj .

Theorem.

(i) AV1,V2(s) extends to a rational function of s which is regular at ∞, and such that

AV1,V2(s) = 1 − l�2 
h

s2
+ O

(

s−3
)

The poles of AV1,V2(s)
±1 are contained in

σ(V2) − σ(V1) − �

2
{l + r}

where r ranges over the integers such that c
(r)

ij �= 0 for some i, j ∈ I.

(ii) For any s, s′ we have [AV1,V2(s),AV1,V2(s
′)] = 0.

(iii) For any V1,V2,V3 ∈ Repfd(Y�(g)), we have

AV1⊗s1 V2,V3(s2) =AV1,V3(s1 + s2)AV2,V3(s2)

AV1,V2⊗s2 V3(s1 + s2) =AV1,V3(s1 + s2)AV1,V2(s1)

(iv) The following shifted unitarity condition holds

σ ◦AV1,V2(−s) ◦ σ−1 =AV2,V1(s − l�)

where σ : V1 ⊗ V2 → V2 ⊗ V1 is the flip of the tensor factors.

(v) For every a, b ∈ C we have

AV1(a),V2(b)(s) =AV1,V2(s + a − b)

Proof. — Properties (ii), (iii) and (v) follow from the definition of A, and the fact that
ti(u) are primitive with respect to the Drinfeld coproduct. To prove (i) and (iv), we work
in the following more general situation.

Let V,W be complex, finite-dimensional vector spaces, A,B : C → End(V) ra-
tional functions satisfying the assumptions of Proposition 5.4, and let log A(v), log B(v)

be the corresponding logarithms. Let σ(A), σ (B) denote the set of poles of A(v)±1 and
B(v)±1 respectively. Set

X(s) = exp
(˛

C1

A(v)−1A′(v) ⊗ log
(

B(v + s)
)

dv

)

where C1 encloses σ(A), and s is such that log(B(v + s)) is analytic within C1.
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Claim 1. — The operator X(s) ∈ End(V ⊗ W) is a rational function of s, regular at ∞, and

has the following Taylor series expansion near ∞

X(s) = 1 + (A0 ⊗ B0)s
−2 + O

(

s−3
)

where A(s) = 1+A0s−1 +O(s−2) and B(s) = 1+B0s−1 +O(s−2). Moreover, the poles of X(s)±1

are contained in σ(B) − σ(A).

Note that this claim implies the first part of Theorem 5.5(i), since

AV1,V2(s) =
∏

i,j∈I
r∈Z

exp
(˛

C
t′i (v) ⊗ tj

(

v + s + (l + r)�

2

)

dv

)−c
(r)
ij

= 1 − �
2s−2

∑

i,j∈I
r∈Z

c
(r)

ij ξi,0 ⊗ ξj,0 + O
(

s−3
)

= 1 − l�2
hs−2 + O
(

s−3
)

since
∑

r∈Z c
(r)

ij = cij(T)|T=1 is the (i, j) entry of l · B−1.
Part (iv) of Theorem 5.5 is a consequence of the following claim, together with the

fact that c
(r)

ji = c
(r)

ij = c
(−r)

ij .

Claim 2. — X(s) = exp(
¸
C2

log(A(v − s)) ⊗ B(v)−1B′(v) dv), where C2 encloses σ(B)

and s ∈ C is such that log(A(v − s)) is analytic within C2.

We prove these claims in Sections 5.6 and 5.7 respectively. �

5.6. Proof of Claim 1. — Since A(v) commutes with itself for different values of v,
the semisimple and unipotent parts A(v) = AS(v)AU(v) of the Jordan decomposition
of A(v) are rational functions of v [13, Lemma 4.12]. Since the logarithmic derivative
of A(v) separates the two additively, we can treat the semisimple and unipotent cases
separately.

The semisimple case reduces to the scalar case, i.e., when V is one-dimensional
and

A(v) =
∏

j

v − aj

v − bj

= 1 +
⎛

⎝

∑

j

bj − aj

⎞

⎠v−1 + O
(

v−2
)
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for some aj, bj ∈ C. In this case,

X(s) = exp

⎛

⎝

∑

j

˛
C1

(

1
v − aj

− 1
v − bj

)

⊗ log
(

B(v + s)
)

dv

⎞

⎠

= exp

⎛

⎝

∑

j

1 ⊗ (

log
(

B(s + aj)
)− log

(

B(s + bj)
))

⎞

⎠

=
∏

j

1 ⊗ B(s + aj)B(s + bj)
−1

which is a rational function of s such that the poles of X(s)±1 are contained in σ(B) −
σ(A). Moreover,

X(s) = 1 + s−2

⎛

⎝

∑

j

bj − aj

⎞

⎠⊗ B0 + O
(

s−3
)

Assume now that A(v) is unipotent. In this case,

log
(

A(v)
)=

∑

k≥1

(−1)k−1 (A(v) − 1)k

k
= A0v

−1 + O
(

v−2
)

is given by a finite sum, and is therefore a rational function of v. Decomposing it into
partial fractions yields

log
(

A(v)
)=

∑

j∈J
n∈Z≥0

Nj,n

(v − aj)n+1

where J is a finite indexing set, aj ∈ C and
∑

j Nj,0 = A0. In this case we obtain

X(s) = exp

⎛

⎜

⎜

⎝

∑

j∈J
n∈Z≥0

−(n + 1)Nj,n ⊗ ∂n+1
v

(n + 1)! log
(

B(v)
)

∣

∣

∣

∣

v=s+aj

⎞

⎟

⎟

⎠

This is again a rational function of s since the Nj,n are nilpotent and pairwise commute,
such that the poles of X(s)±1 are contained in σ(B) − σ(A). Moreover,

X(s) = 1 + s−2
∑

j

Nj,0 ⊗ B0 + O
(

s−3
)
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5.7. Proof of Claim 2. — Let X(A),X(B) ⊂ C be defined by (5.6), and C1,C2 be two
contours enclosing X(A) and X(B) respectively. For each s ∈ C such that C1 + s is outside
of C2, we have ˛

C1

A(v)−1A′(v) ⊗ log
(

B(v + s)
)

dv

= −
˛
C1

log
(

A(v)
)⊗ B(v + s)−1B′(v + s) dv

=
˛
C2−s

log
(

A(v)
)⊗ B(v + s)−1B′(v + s) dv

=
˛
C2

log
(

A(w − s)
)⊗ B(w)−1B′(w) dw

where the first equality follows by integration by parts, the second by a deformation of
contour since the integrand is regular at v = ∞ and has zero residue there, and the third
by the change of variables w = v + s.

5.8. The abelian R-matrix of Y�(g). — Let V1,V2 ∈ Repfd(Y�(g)), and let
AV1,V2(s) ∈ GL(V1 ⊗ V2) be the operator defined in Section 5.5. Consider the additive
difference equation

(5.9) RV1,V2(s + l�) =AV1,V2(s)RV1,V2(s)

where l = mh∨ was defined in Section 5.1.
This equation is regular, in that AV1,V2(s) = 1 + O(s−2) by Theorem 5.5. In par-

ticular, it admits two canonical meromorphic fundamental solutions

R0,±
V1,V2

: C → GL(V1 ⊗ V2)

which are uniquely determined by the following requirements (see e.g., [2, 3, 22] or
[13, §4])

• R0,±
V1,V2

(s) is holomorphic and invertible for ±Re(s/�) 
 0.
• R0,±

V1,V2
(s) possesses an asymptotic expansion of the form

R0,±
V1,V2

(s) ∼ 1 +R±
0 s−1 +R±

1 s−2 + · · ·
in any half-plane ±Re(s/�) > m, m ∈ R. In other words, we can find R > 0 so
that for any N ≥ 0, there is a constant CN such that

∥

∥

∥

∥

∥

R0,±
V1,V2

(s) −
(

1 +
N−1
∑

k=0

R±
k s−k−1

)∥

∥

∥

∥

∥

<
CN

|s|N+1

for |s| > R in the corresponding domain, where ‖ · ‖ is a fixed norm on
End(V1 ⊗ V2).
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Explicitly,

R0,+
V1,V2

(s) =∏→
n≥0 AV1,V2(s + nl�)−1

R0,−
V1,V2

(s) =∏→
n≥1 AV1,V2(s − nl�)

where the products converge uniformly on compact sets of ±Re(s/�) 
 0 since
AV1,V2(s) = 1 + O(s−2). Note that the order of products indicated above is immaterial,
since AV1,V2(s) takes values in a commutative subalgebra of End(V1 ⊗ V2).

5.9. The following is the main result of this section.

Theorem. — R0,±
V1,V2

(s) have the following properties

(i) The map

σ ◦R0,±
V1,V2

(s) : V1(s) ⊗0 V2 → V2 ⊗0 V1(s)

where σ is the flip of tensor factors, is a morphism of Y�(g)-modules, which is natural in

V1 and V2.

(ii) For any V1,V2,V3 ∈ Repfd(Y�(g)) we have

R0,±
V1⊗s1 V2,V3

(s2) =R0,±
V1,V3

(s1 + s2)R0,±
V2,V3

(s2)

R0,±
V1,V2⊗s2 V3

(s1 + s2) =R0,±
V1,V3

(s1 + s2)R0,±
V1,V2

(s1)

(iii) The following unitary condition holds

σ ◦R0,±
V1,V2

(−s) ◦ σ−1 =R0,∓
V2,V1

(s)−1

(iv) For a, b ∈ C we have

R0,±
V1(a),V2(b)

(s) =R0,±
V1,V2

(s + a − b)

(v) For any s, s′,
[

R0,±
V1,V2

(s),R0,±
V1,V2

(

s′)]= 0 = [

R0,±
V1,V2

(s),R0,∓
V1,V2

(

s′)]

(vi) R0,±
V1,V2

(s) have the same asymptotic expansion, which is of the form

(5.10) R0,±
V1,V2

(s) ∼ 1 + �
hs−1 + O
(

s−2
)

(vii) There is a ρ > 0 such that the asymptotic expansion of R0,±
V1,V2

(s) is valid on any domain

{±Re(s/�) > m
}∪{| Im(s/�)| > ρ, arg(±s/�) ∈ (−π + δ,π − δ)

}

where m ∈ R and δ ∈ (0,π) are arbitrary.
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(viii) The poles of R0,+
V1,V2

(s)±1 and R0,−
V1,V2

(s)±1 are contained in

σ(V2) − σ(V1) − Z≥0l� − �

2
{l + r} and

σ(V2) − σ(V1) + Z>0l� − �

2
{l + r}

where r ranges over the integers such that c
(r)

ij �= 0 for some i, j ∈ I.

Proof. — Part (i) is proved in 5.12 after some preparatory results. Properties (ii)–(vi)
and (viii) follow from Theorem 5.5 and Section 5.8. (vii) is proved in [31, Lemma 8.1]. �

5.10. Commutation relations with AV1,V2(s). — Let C ⊂ C be a contour, and a� : C →
End(V�), � = 1,2 two meromorphic functions which are analytic within C and commute
with the operators {ξi,r}i∈I,r∈Z≥0 . For any k ∈ I, define operators X±,�

k ∈ End(V1 ⊗ V2) by

X±,1
k =

˛
C

a1(v)x±
k (v)⊗a2(v) dv and X±,2

k =
˛
C

a1(v)⊗a2(v)x±
k (v) dv

Proposition. — The following commutation relations hold

Ad
(

AV1,V2(s)
)

X±,1
k =

˛
C

a1(v)x±
k (v)⊗ a2(v)ξk(v + s + l�)±1ξk(v + s)∓1 dv

Ad
(

AV1,V2(s)
)

X±,2
k =

˛
C

a1(v)ξk(v − s)±1ξk(v − s − l�)∓1 ⊗ a2(v)x±
k (v) dv

Proof. — We only prove the first relation. The second one follows from the first
and the unitarity property of Theorem 5.5. We begin by computing the commutation
between X±,1

k and a typical summand in logAV1,V2(s). Set b = ±�diaik/2. Note that the
definition of X±,1

k does not change if we replace the contour C by a smaller one C ′, as long
as both C and C ′ enclose the same set of poles of x±

k (v). Let C1 be the contour chosen for
the definition of AV1,V2(s) given in Section 5.5. According to Lemma 3.13, if v0 is a pole
of x±

k (v) then C1 must enclose v0 ± b. Combining these observations, we will assume, in
the calculation below, that C1 encloses C and its translates by ±b. By (3.5),

[˛
C1

t′i (u) ⊗ tj(u + s) du,X±,1
k

]

=
˛
C1

˛
C

a1(v)
[

t′i (u), x±
k (v)

]⊗ tj(u + s)a2(v) dvdu

=
˛
C1

˛
C

1
u − v + b

a1(v)x±
k (v) ⊗ tj(u + s)a2(v) dvdu
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−
˛
C1

˛
C

1
u − v − b

a1(v)x±
k (v) ⊗ tj(u + s)a2(v) dvdu

+
˛
C1

˛
C

1
u − v − b

a1(v)x±
k (u − b) ⊗ tj(u + s)a2(v) dvdu

−
˛
C1

˛
C

1
u − v + b

a1(v)x±
k (u + b) ⊗ tj(u + s)a2(v) dvdu

=
˛
C

a1(v)x±
k (v) ⊗ (

tj(v − b + s) − tj(v + b + s)
)

a2(v) dv

where the third equality follows from the fact that s is such that tj(u + s) is holomorphic
inside C1. Note that the third and the fourth terms on the right-hand side of the second
equality vanish since their integrands are holomorphic in the variable v.

Let the indeterminate T of Section 5.1 act as the difference operator Ttj(v) =
tj(v − �/2). Then,

∑

i,j∈I

[˛
C1

t′i (u) ⊗ cij(T)tj(u + s) du,X±,1
k

]

=
∑

i,j∈I

˛
C

a1(v)x±
k (v) ⊗ a2(v)cij(T)

(

T±bik − T∓bik
)

tj(v + s) dv

= ±
˛
C

a1(v)x±
k (v) ⊗ a2(v)

(

Tl − T−l
)

tk(v + s) dv

where the second equality follows from (5.1). The claimed identity easily follows from
this. �

5.11. Let X±,1
k ,X±,2

k be the operators defined in 5.10. The following is a corollary
of Proposition 5.10 and the definition of R0,±(s).

Proposition. — The following commutation relations hold for any ε ∈ {±}

Ad
(

R0,ε
V1,V2

(s)
)

X±,1
k =

˛
C

a1(v)x±
k (v) ⊗ a2(v)ξk(v + s)±1 dv

Ad
(

R0,ε
V1,V2

(s)
)

X±,2
k =

˛
C

a1(v)ξk(v − s)∓1 ⊗ a2(v)x±
k (v) dv

5.12. Proof of (i) of Theorem 5.9. — We first rewrite the Drinfeld coproduct in a
more symmetric way. Let V be a finite-dimensional representation of Y�(g) and C± ⊂ C
a contour containing the poles of x±

i (u) on V. Then, a simple contour deformation shows
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that, for any u not contained inside C±,˛
C±

x±
i (v)

dv

u − v
= x±

i (u)

It follows that

�s

(

x+
i (u)

)=
˛
C1

x+
i (v − s) ⊗ 1

dv

u − v
+
˛
C2

ξi(v − s) ⊗ x+
i (v)

dv

u − v

�s

(

x−
i (u)

)=
˛
C1

x−
i (v − s) ⊗ ξi(v)

dv

u − v
+
˛
C2

1 ⊗ x−
i (v)

dv

u − v

where C1,C2 are as in 4.5.
We need to show that σ ◦ R0,ε

V1,V2
(s) : V1(s) ⊗0 V2 → V2 ⊗0 V1(s) intertwines the

action of Y�(g). This is obvious for ξi(u), since ξi(u) is group-like and commutes with
R0,ε

V1,V2
(s). Denote now by x+

i (u)′ and x+
i (u)′′, the action of x+

i (u) on V1(s) ⊗0 V2 and
V2 ⊗0 V1(s) respectively. By above formulas, we have

x+
i (u)′ =

˛
C1

x+
i (v − s) ⊗ 1

dv

u − v
+
˛

C2

ξi(v − s) ⊗ x+
i (v)

dv

u − v

x+
i (u)′′ =

˛
C2

x+
i (v) ⊗ 1

dv

u − v
+
˛

C1

ξi(v) ⊗ x+
i (v − s)

dv

u − v

Using Proposition 5.11, we can compute Ad(σ ◦R0,ε
V1,V2

(s))x+
i (u)′ as follows

σ

(

R0,ε
V1,V2

(s)

(˛
C1

x+
i (v − s) ⊗ 1

dv

u − v

+
˛

C2

ξi(v − s) ⊗ x+
i (v)

dv

u − v

)

R0,ε
V1,V2

(s)−1

)

σ

= σ

(˛
C1

x+
i (v − s) ⊗ ξi(v)

dv

u − v
+
˛

C2

1 ⊗ x+
i (v)

dv

u − v

)

σ

=
˛

C1

ξi(v) ⊗ x+
i (v − s)

dv

u − v
+
˛

C2

x+
i (v) ⊗ 1

dv

u − v

This implies that Ad(σ ◦R0,ε
V1,V2

(s))x+
i (u)′ = x+

i (u)′′ and the result follows. The proof for
x−

i (u) is identical.

6. The functor �

We review below the main construction of [13]. Assume henceforth that � ∈ C\Q,
and that q = eπι�.
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6.1. Difference equations. — Consider the abelian, additive difference equations, for
unknown functions φi : C → GL(V)

(6.1) φi(u + 1) = ξi(u)φi(u)

defined by the commuting fields ξi(u) = 1 + �ξi,0u−1 + · · · on a finite-dimensional repre-
sentation V of Y�(g).

Let φ±
i (u) : C → GL(V) be the canonical fundamental solutions of (6.1). φ±

i (u)

are uniquely determined by the requirement that they be holomorphic and invertible for
±Re(u) 
 0, and admit an asymptotic expansion of the form

φ±
i (u) ∼ (

1 + ϕ±
0 u−1 + ϕ±

1 u−2 · · · )(±u)�ξi,0

in any right (resp. left) half-plane ±Re(s) > m, m ∈ R (see e.g., [2, 3, 22] or [13, §4]).
φ+

i (u),φ−
i (u) are regularisations of the formal infinite products

ξi(u)
−1ξi(u + 1)−1ξi(u + 2)−1 · · · and ξi(u − 1)ξi(u − 2)ξi(u − 3) · · ·

respectively.
Let Si(u) = (φ+

i (u))−1φ−
i (u) be the connection matrix of (6.1). Thus, Si(u) is

1-periodic in u, and therefore a function of z = exp(2πιu). It is moreover regular at
z = 0,∞ [13, Prop. 4.8], and therefore a rational function of z such that

Si(0) = e−πι�ξi,0 = Si(∞)−1

Explicitly,

Si(u) = lim
n→∞ ξi(u + n) · · · ξi(u + 1)ξi(u)ξi(u − 1) · · · ξi(u − n)

6.2. Non-congruent representations. — We shall say that V ∈ Repfd(Y�(g)) is non-

congruent if, for any i ∈ I, the poles of x+
i (u) (resp. x−

i (u)) are not congruent modulo Z�=0.
Let RepNC

fd (Y�(g)) be the full subcategory of Repfd(Y�(g)) consisting of non-congruent
representations.

6.3. The functor �. — Given V ∈ RepNC
fd (Y�(g)), define the action of the genera-

tors of Uq(Lg) on �(V) = V as follows.

(i) For any i ∈ I, the generating series 	i(z)
+ (resp. 	i(z)

−) of the commuting gen-
erators of Uq(Lg) acts as the Taylor expansions at z = ∞ (resp. z = 0) of the
rational function

	i(z) = Si(u)|e2πιu=z
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To define the action of the remaining generators of Uq(Lg), let g±
i (u) : C → GL(V) be

given by g+
i (u) = φ+

i (u + 1)−1 and g−
i (u) = φ−

i (u). Explicitly,

(6.2)

g+
i (u) =

( ←
∏

n≥1

ξi(u + n) e−�ξi,0/n

)

eγ �ξi,0

g−
i (u) = e−γ �ξi,0

( →
∏

n≥1

ξi(u − n) e�ξi,0/n

)

where γ = limn→∞(1 + · · · + 1/n − log n) is the Euler–Mascheroni constant, are regular-
isations of the infinite products

· · · ξi(u + 2)ξi(u + 1) and ξi(u − 1)ξi(u − 2) · · ·
Note also that, by definition of g±

i (u)

(6.3) Si(u) = g+
i (u) · ξi(u) · g−

i (u)

Let c±
i ∈ C× be scalars such that c−

i c+
i = di�(�di)

2.

(ii) For any i ∈ I and k ∈ Z, X±
i,k acts as the operator

X±
i,k = c±

i

˛
C±

i

e2πιkug±
i (u)x±

i (u) du

where the Jordan curve C±
i encloses the poles of x±

i (u) and none of their
Z�=0-translates.13 The corresponding generating series are the expansions at
z = ∞,0 of the End(V)-valued rational function given by

X±
i (z) = c±

i

˛
C±

i

z

z − e2πιu
g±

i (u)x±
i (u) du

where z lies outside of exp(2πιC±
i ).

6.4. Let � ⊂ C be a subset such that � ± �

2 ⊂ �. Let

Rep�
fd

(

Y�(g)
)⊂ Repfd

(

Y�(g)
)

be the full subcategory of consisting of the representations V such that σ(V) ⊂ �.
Similarly, let 
 ⊂ C× be a subset stable under multiplication by q±1. We define

Rep

fd(Uq(Lg)) to be the full subcategory of Repfd(Uq(Lg)) consisting of those V such

that σ(V) ⊂ 
.

13 Note that such a curve exists for any i ∈ I since V is non-congruent.
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6.5.

Theorem [13, Thm. 5.4, Thm. 6.3, Prop. 7.7].

(i) The above operators give rise to an action of Uq(Lg) on V. They therefore define an exact,

faithful functor

� : RepNC
fd

(

Y�(g)
)−→ Repfd

(

Uq(Lg)
)

(ii) The functor � is compatible with shift automorphisms. That is, for any V ∈
RepNC

fd (Y�(g)) and a ∈ C,

�
(

V(a)
)= �(V)

(

e2πιa
)

(iii) Let � ⊂ C be a non-congruent subset such that � ± 1
2� ⊂ �. Then, Rep�

fd(Y�(g)) is

a subcategory of RepNC
fd (Y�(g)), and � restricts to an isomorphism of abelian categories.

�� : Rep�
fd

(

Y�(g)
) ∼→ Rep


fd

(

Uq(Lg)
)

where 
 = exp(2πι�).

(iv) �� is compatible with the q-characters of Knight and Frenkel–Reshetikhin.

7. Meromorphic tensor structure on �

7.1. The abelian qKZ equations. — Let V1,V2 be finite-dimensional representations
of Y�(g), choose ε ∈ {±}, and let R0,ε

V1,V2
(s) be the corresponding R-matrix defined in

Section 5.8. Consider the abelian, additive qKZ equation for an unknown function f :
C → End(V1 ⊗ V2)

(7.1) f (s + 1) =R0,ε
V1,V2

(s)f (s)

Note that this equation does not fit the usual assumptions in the study of difference
equations since R0,ε

V1,V2
(s) is not rational. Moreover, R0,ε

V1,V2
(s) may not have a Laurent

expansion at ∞ but, by Theorem 5.9, only an asymptotic expansion of the form 1 +
�
h/s + O(s−2) valid in any domain of the form

{

Re(s/ε�) > m
}∪ {| Im(s/�)| > ρ,arg(s/ε�) ∈ (−π + δ,π − δ)

}

where ρ > 0 is fixed, and m ∈ R, δ ∈ (0,π) are arbitrary.14 Nevertheless, these asymp-
totics and the fact that the poles of R0,ε(s)±1 are contained in the complement of a do-
main of the above form, are sufficient to carry over the standard proofs (see, e.g., [13, §4])
and yield the following.

14 For the qKZ equations determined by the full R-matrix, these issues are usually addressed by proving the existence
of factorisation RV1,V2 (s) = Rrat

V1,V2
(s) · Rmer

V1,V2
(s), where Rrat

V1,V2
(s) is a rational function of s which intertwines the Kac–

Moody coproduct � and its opposite, and the meromorphic factor Rmer
V1,V2

(s) intertwines � (see [20] for the case of
Uq(Lg)), and then working with Rrat

V1,V2
(s) instead of RV1,V2 (s). A similar factorisation can be obtained for the abelian

R-matrices R0,±(s). We shall, however, prove in [12] that neither of these factorisations are natural with respect to V1,V2,
which is why we work with the meromorphic R-matrices R0,±(s).
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Proposition. — Let n ∈ C× be perpendicular to � and such that Re(n) ≥ 0.

(i) If ε� /∈ R<0, Equation (7.1) admits a canonical right meromorphic solution �ε
+ : C →

GL(V1 ⊗ V2), which is uniquely determined by the following requirements

• �ε
+ is holomorphic and invertible for Re(s) 
 0 if Re(ε�) ≥ 0, and otherwise

on a sector of the form

(7.2) Re(s) 
 0 and Re(s/n) 
 0

• �ε
+ has an asymptotic expansion of the form (1 + O(s−1))s�
h in any right

half-plane if Re(ε�) > 0, and otherwise in a sector of the form (7.2).

(ii) If ε� /∈ R>0, Equation (7.1) admits a canonical left meromorphic solution �ε
− : C →

GL(V1 ⊗ V2), which is uniquely determined by the following requirements

• �ε
− is holomorphic and invertible for Re(s) � 0 if Re(ε�) ≤ 0, and otherwise

on a sector of the form

(7.3) Re(s) � 0 and Re(s/n) � 0

• �ε
− has an asymptotic expansion of the form (1 + O(s−1))(−s)�
h in any left

half-plane if Re(ε�) < 0, and otherwise in a sector of the form (7.3).

The right and left solutions, when defined, are given by the products

�ε
+(s) = e−�γ
�R0,ε

V1,V2
(s)−1

−→
∏

m≥1
R0,ε

V1,V2
(s + m)−1 e�
h/m(7.4)

�ε
−(s) = e−�γ
�

−→
∏

m≥1
R0,ε

V1,V2
(s − m) e�
h/m(7.5)

7.2. Proof of Proposition 7.1. — As mentioned before, the proof follows the same
strategy as in [13, §4]. More precisely, we use the fact that �
h commutes with R0,ε

V1,V2
(s)

to regularise (7.1), that is set (as in [13, §4.6])

R0,ε
V1,V2

(s) := (

1 − �
hs−1
)

R0,ε
V1,V2

(s)

The auxiliary equation f (s + 1) = (1 − �
hs−1)f (s) can be solved using the �-function
(see [13, §4.5, 4.6]), while the regularised equation (Equation (7.1) with R0,ε

V1,V2
replaced

by R0,ε
V1,V2

) is solved by taking the infinite products [13, §4.4]:

�ε+(s) =
→
∏

n≥0

R0,ε
V1,V2

(s + n)−1
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�ε−(s) =
→
∏

n≥1

R0,ε
V1,V2

(s − n)

This is the only point of departure from the rational case. In order to prove the
convergence of these infinite products, we only need the asymptotics of R0,ε

V1,V2
up to the

second order in the desired zones, as stated in the following lemma. Its proof is standard
and hence omitted.

Lemma. — Let 
 ⊂ C be an open set, W a finite-dimensional complex vector space, and

f : 
 → End(W) a holomorphic and invertible function such that the following assumptions hold.

(a) For each n ∈ Z≥0, 
 + n ⊂ 
.

(b) There exists a constant C ∈ R>0 such that

‖f (s) − 1‖ <
C
|s|2 as s → ∞, s ∈ 


for some norm ‖ · ‖ on End(W).

Then the sequence of functions {f (s)f (s + 1) · · · f (s + n)}n≥1 converges uniformly on compact sets in


 and hence defines a holomorphic function F(s) on 
.

If, in addition,

(c) f (s) extends to a meromorphic function on C.

(d) 
 contains a fundamental domain for s �→ s + 1.

then F(s) can be extended to a meromorphic function on C by using the equation F(s) = f (s)F(s + 1).

The same assertions hold for the infinite product f (s − 1)f (s − 2) · · · after changing Z≥0 to

Z≤0 in condition (a) above.

This, in particular, explains that we have to consider sectors given in Figure 1 in
order to avoid the poles of R0,ε

V1,V2
(s)±1. Thus we obtain the solutions �ε

± of the difference
equation (7.1), which are explicitly given in (7.4) and (7.5), and whose asymptotics can be
computed using the calculation in [13, §4.7].

7.3. The tensor structure J ε
V1,V2

(s). — Let ε ∈ {±} be such that ε� /∈ R<0, and �ε
+(s)

the right fundamental solution of the abelian qKZ equation (7.1). Define a meromorphic
function

J ε
V1,V2

: C → GL(V1 ⊗ V2)

by J ε
V1,V2

(s) = �ε
+(s + 1)−1. Thus,

(7.6) J ε
V1,V2

(s) = e�γ
h

←−
∏

m≥1
R0,ε

V1,V2
(s + m)e−

�
h

m
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FIG. 1. — Domains of holomorphy and invertibility of �ε
+ (resp. �ε

−) given by the ruled region in the right (resp. left) picture,
when Re(ε�) > 0. The darker grey region contains poles of R0,ε(s)±1

Theorem.

(i) J ε
V1,V2

(s) is natural in V1,V2.

(ii) If V1 and V2 are non-congruent, and ζ = e2πιs,

J ε
V1,V2

(s) : �(V1) ⊗ζ �(V2) −→ �(V1 ⊗s V2)

is an isomorphism of Uq(Lg)-modules for any s �∈ σ(V2) − σ(V1) + Z.

(iii) For any non-congruent V1,V2,V3 ∈ Repfd(Y�(g)), the following is a commutative dia-

gram

(�(V1) ⊗ζ1 �(V2)) ⊗ζ2 �(V3)

J ε
V1,V2

(s1)⊗1

�(V1) ⊗ζ1ζ2 (�(V2) ⊗ζ2 �(V3))

1⊗J ε
V2,V3

(s2)

�(V1 ⊗s1 V2) ⊗ζ2 �(V3)

J ε
V1⊗s1 V2,V3

(s2)

�(V1) ⊗ζ1ζ2 �(V2 ⊗s2 V3)

J ε
V1,V2⊗s2 V3

(s1+s2)

�((V1 ⊗s1 V2) ⊗s2 V3) �(V1 ⊗s1+s2 (V2 ⊗s2 V3))

where ζi = exp(2πιsi).
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(iv) The poles of J +
V1,V2

(s)±1 and J −
V1,V2

(s)±1 are contained in

σ(V2) − σ(V1) − Z≥0l� − �

2
{l + r} − Z>0 and

σ(V2) − σ(V1) + Z>0l� − �

2
{l + r} − Z>0

where r ranges over the integers such that c
(r)

ij �= 0 for some i, j ∈ I.

Remark. — Note that the condition s �∈ σ(V2) − σ(V1) + Z implies that V1 ⊗s V2

exists and is non-congruent, which is required in order to define �(V1 ⊗s V2).

Proof. — (i) and (iii)–(iv) follow from (7.6) and Theorem 5.9. (ii) is proved in 7.4. �

7.4. Given an element X ∈ Uq(Lg), we denote its action on �(V1)⊗ζ �(V2) and
�(V1 ⊗s V2) by X′ and X′′ respectively. We need to prove that

J ε
V1,V2

(s)X′J ε
V1,V2

(s)−1 = X′′

Since ξi(u) are group-like with respect to the Drinfeld coproduct, so are the fundamental
solutions and the connection matrix of the difference equation φi(u + 1) = ξi(u)φi(u),
which implies that 	i(z)

′ = 	i(z)
′′. Since R0,±

V1,V2
(s) and hence J ε

V1,V2
(s) commute with

these elements, this proves the required relation for {	i(z)}i∈I.
We now prove the relation for X+

i,k . The proof for X−
i,k is similar. By 4.2 and 6.3, the

action of (c+
i )−1X+

i,k on �(V1) ⊗ζ �(V2) is given by

ζ k

˛
C1

e2πιkug+
i (u)x+

i (u) ⊗ 1 du

+
˛
C2

	i

(

ζ−1w
)⊗

˛
C2

g+
i (u)x+

i (u)
w

w − e2πιu
wk−1 dwdu

= ζ k

˛
C1

e2πιkug+
i (u)x+

i (u) ⊗ 1 du

+
˛

C2

e2πιkug+
i (u − s)ξi(u − s)g−

i (u − s) ⊗ g+
i (u)x+

i (u) du

where

• C� encloses σ(V�) and none of its Z�=0-translates.
• C2 encloses C2, exp(2πισ (V2)) and none of the points in exp(2πι(s + σ(V1))).

Note that these sets contain σ(�(V2)) and ζσ (�(V1)) by definition. We also
remark that we are assuming s �∈ σ(V2) − σ(V1) + Z in (ii) of Theorem 7.3
which makes such a choice of contours possible.

and we used (6.3).
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On the other hand, the action of (c+
i )−1X+

i,k on �(V1 ⊗s V2) is given by

˛
C12

e2πιkug+
i (u − s) ⊗ g+

i (u)

(

x+
i (u − s) ⊗ 1

+
˛

C′
2

ξi(v − s) ⊗ x+
i (v)

dv

u − v

)

du

= ζ k

˛
C1

e2πιkug+
i (u)x+

i (u) ⊗ g+
i (u + s) du

+
˛

C2

e2πιkvg+
i (v − s)ξi(v − s) ⊗ g+

i (v)x+
i (v) dv

where

• C12 encloses (σ (V1) + s) ∪ σ(V2) (which contains σ(V1 ⊗s V2)) and none of its
Z�=0-translates. Again it is possible thanks to our assumption on s imposed in (ii)
of Theorem 7.3 above.

• C′
2 encloses σ(V2) and none of the points of σ(V1) + s.

C1 is as above, and we assumed that C12 encloses C′
2, and that C′

2 = C2.
Let us compute the action of Ad(J ε

V1,V2
(s)) on the first summand of (c+

i )−1(X+
i,k)

′.
Note that ad(
h) x+

i (v) ⊗ 1 = ∑

j∈I[�∨
j , x+

i (v)] ⊗ ξj,0 = x+
i (v) ⊗ ξi,0, by Equation (5.8).

Therefore, for any a ∈ C

Ad
(

ea
h
)

x+
i (v) ⊗ 1 = ead(a
h) x+

i (v) ⊗ 1 = x+
i (v) ⊗ eaξi,0

Using this and Proposition 5.11 we get

Ad
(

J ε
V1,V2

(s)
)

(

ζ k

˛
C1

e2πιkug+
i (u)x+

i (u) ⊗ 1 du

)

= ζ k

˛
C1

e2πιkug+
i (u)x+

i (u) ⊗ eγ �ξi,0
∏

n≥1

ξi(u + s + n)e−�ξi,0/n du

= ζ k

˛
C1

e2πιkug+
i (u)x+

i (u) ⊗ g+
i (u + s) du

by the definition of g+
i (u) given in (6.2). This yields the first term on the right-hand side

of (c+
i )−1(X+

i,k)
′′. A similar computation can be carried out for the second summand of

(c+
i )−1(X+

i,k)
′ which proves that

J ε
V1,V2

(s)
(

X+
i,k

)′J ε
V1,V2

(s)−1 = (

X+
i,k

)′′
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8. The commutative R-matrix of the quantum loop algebra

In this section, we review the construction of the commutative part R0(ζ ) of the
R-matrix of the quantum loop algebra. We prove that if |q| �= 1, R0(ζ ) defines a mero-
morphic commutativity constraint on Repfd(Uq(Lg)), when the latter is equipped with
the Drinfeld tensor product studied in Section 4.

8.1. Drinfeld pairing. — The Drinfeld pairing for the quantum loop algebra was
computed in terms of the loop generators by Damiani [4]. Its restriction to U0 is given in
[4, Corollary 9]. Define {Hi,r}i∈I,r∈Z �=0 by

(8.1) 	±
i (z) = 	±

i,0 exp

(

±(

qi − q−1
i

)
∑

r≥1

Hi,±rz
∓r

)

Then, for each m, n ≥ 1

(8.2) 〈Hi,m,Hj,−n〉 = −δm,n

qmbij − q−mbij

m(qi − q−1
i )(qj − q−1

j )

where bij = diaij = djaji . Define H±
i (z) ∈ z∓1U0[[z∓1]] by

H±
i (z) = ±(

qi − q−1
i

)
∑

r≥1

Hi,±rz
∓r

Then, by (8.2),

(8.3)
〈

H+
i (z),H−

j (w)
〉=

∑

m≥1

qmbij − q−mbij

m

(

w

z

)m

= log
(

z − q−bij w

z − qbij w

)

8.2. Construction of R0. — We now follow the argument outlined in Section 5.2
to construct the canonical element R0 of this pairing. Namely, differentiating (8.3) with
respect to z yields

〈

d

dz
H+

i (z),H−
j (w)

〉

= 1
z − q−bijw

− 1
z − qbijw

= (

Tbij − T−bij
) 1

z − w

where Tf (z,w) = f (z, q−1w) is the multiplicative shift operator with respect to w. Hence,
if we define

(8.4) Hj,−(w) = (

Tl − T−l
)−1 ∑

k∈I

cjk(T)H−
k (w) ∈ wU0[[w]]

where (Tl − T−l)−1 acts on wk , k �= 0, as multiplication by (q−lk − qlk)−1, then
〈

d

dz
H+

i (z),Hj,−(w)

〉

= δij

1
z − w
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Note that Hj,−(w) is explicitly given by

Hj,−(w) =
∑

k∈I

(

qk − q−1
k

)
∑

n≥1

(

cjk(q
n)

qnl − q−nl
Hk,−n

)

wn

so that R0 is equal to

R0 = q−
h exp

⎛

⎜

⎝
−
∑

i,j∈I
m≥1

m(qi − q−1
i )(qj − q−1

j )cij(q
m)

qml − q−ml
Hi,m ⊗ Hj,−m

⎞

⎟

⎠

8.3. q-Difference equation for R0. — Set R0(ζ ) = (τζ ⊗ 1)R0, so that

R0(ζ ) = q−
h exp

⎛

⎜

⎝−
∑

i,j∈I
m≥1

m(qi − q−1
i )(qj − q−1

j )cij(q
m)

qml − q−ml
ζ mHi,m ⊗ Hj,−m

⎞

⎟

⎠(8.5)

It is easy to see that R0(ζ ) satisfies the following q-difference equation

R0
(

q2lζ
)

R0(ζ )−1(8.6)

= exp

⎛

⎜

⎝−
∑

i,j∈I
m≥1

m
(

qi − q−1
i

)(

qj − q−1
j

)

cij

(

qm
)

qmlζ mHi,m ⊗ Hj,−m

⎞

⎟

⎠

8.4. Using the method employed in 5.3–5.5, we will show that the right-hand
side of (8.6) is the expansion of a rational function at ζ = 0, once it is evaluated on a
tensor product of finite-dimensional representations.

We note first that a typical summand may be interpreted as a contour integral as
follows

∑

m≥1

m
(

qi − q−1
i

)(

qj − q−1
j

)

cij

(

qm
)

qmlζ mHi,m ⊗ Hj,−m

=
∑

r∈Z

c
(r)

ij

˛
C

dH+
i (w)

dw
⊗ H−

j

(

ql+rζw
)

dw

On a tensor product of two finite-dimensional representations V1,V2, the first ten-
sor factor is a rational function of w since

dH+
i (w)

dw
= 	i(w)−1 d	i(w)

dw
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The second tensor factor H−
j (ql+rζw) can be viewed as a single-valued function defined

outside of a set of cuts radiating from ζ = ∞. To see this, note that H−
j (w) is a loga-

rithm of the rational End(V2)-valued function 	+
j,0	j(w), and that the latter is regular

at w = 0,∞ and takes the value 1 at w = 0. The result then follows from the variant of
Proposition 5.4 below.

Proposition. — Let V be a complex, finite-dimensional vector space, and ψ : C → End(V) a

rational function, regular at 0 and ∞ such that

• ψ(0) = 1.

• [ψ(w),ψ(w′)] = 0 for any w,w′ ∈ C.

Let σ(ψ) ⊂ C× be the set of poles of ψ(w)±1, and define the cut-set Y(ψ) by

Y(ψ) =
⋃

α∈σ(ψ)

[α,∞)

where [α,∞) = {tα : t ∈ R≥1}. Then, there is a unique single-valued, holomorphic function H(w) =
log0(ψ(w)) : C \ Y(ψ) → End(V) such that

exp
(

H(w)
)= ψ(w) and H(0) = 0

Moreover, [H(w),H(w′)] = 0 for any w,w′ ∈ C and dH
dw

= ψ−1 dψ

dw
.

The proof of this proposition is analogous to that of Proposition 5.4.

8.5. The operator AV1,V2(ζ ). — Let V1,V2 be two finite-dimensional representa-
tions of Uq(Lg). Let C1 be a contour enclosing the set of poles σ(V1) of V1, and consider
the following operator on V1 ⊗ V2

AV1,V2(ζ ) = exp

⎛

⎜

⎝
−
∑

i,j∈I
r∈Z

c
(r)

ij

˛
C1

dH+
i (w)

dw
⊗ H−

j

(

ql+rζw
)

dw

⎞

⎟

⎠

where

• dH+
i

dw
: C → End(V1) is the rational function 	−1

i
d	i

dw
,

• H−
j : C \ Y(	+

j,0	j(w)) → End(V2) is given by Proposition 8.4,
• ζ ∈ C is small enough so that H−

j (ql+rζw) is an analytic function of w within
C1, for every j ∈ I such that c

(r)

ij �= 0 for some i ∈ I.

Note that, for ζ small, the cut-set ζ−1q−l−rY(	+
j,0	j(w)) of H−

j (ql+rζw) can be made to
avoid the contour C1. In particular, the right-hand side of the equation above defines a
holomorphic function of ζ in a neighbourhood of ζ = 0.

The following is the counterpart for Uq(Lg) of Theorem 5.5.



MEROMORPHIC TENSOR EQUIVALENCE 319

Theorem.

(i) AV1,V2(ζ ) is a rational function of ζ , which is regular at 0 and ∞, and such that

AV1,V2(0) = 1 = AV1,V2(∞).

(ii) The poles of AV1,V2(ζ )±1 are contained in
⋃

r σ(V2)σ (V1)
−1q−l−r , where r ranges over

the integers such that c
(r)

ij �= 0 for some i, j ∈ I.

(iii) For any ζ, ζ ′ we have [AV1,V2(ζ ),AV1,V2(ζ
′)] = 0.

(iv) For any V1,V2,V3 ∈ Repfd(Uq(Lg)), we have

AV1⊗ζ1V2,V3(ζ2) = AV1,V3(ζ1ζ2)AV2,V3(ζ2)

AV1,V2⊗ζ2V3(ζ1ζ2) = AV1,V3(ζ1ζ2)AV1,V2(ζ1)

(v) The following shifted unitarity condition holds

σ ◦ AV1,V2

(

ζ−1
) ◦ σ−1 = AV2,V1

(

q−2lζ
)

where σ : V1 ⊗ V2 → V2 ⊗ V1 is the flip of the tensor factors.

(vi) For every α,β ∈ C× we have

AV1(α),V2(β)(ζ ) = AV1,V2

(

ζαβ−1
)

8.6. The following result is needed to prove (i) of the theorem above. The rest of
the theorem follows from the same reasoning as Theorem 5.5.

Lemma. — AV1,V2(ζ ) extends to a rational function of ζ . Let C1 be a contour enclosing the set

of poles σ(V1) ⊂ C×, and such that 0 is outside of C1. Then we have the following

AV1,V2(ζ ) = exp

⎛

⎜

⎝
−
∑

i,j∈I
r∈Z

c
(r)

ij

˛
C1

dH+
i (w)

dw
⊗ H+

j

(

ql+rζw
)

dw

⎞

⎟

⎠

where H+
j (w) = log(	−

j,0	j(w)) is defined using Proposition 5.4, and ζ ∈ C is large enough such

that H+
j (ql+rζw) is an analytic function of w within C1 for every j ∈ I such that c

(r)

ij �= 0 for some

i ∈ I.

Proof. — The proof of this lemma is analogous to that of Theorem 5.5(i) (see
Claim 1 in the proof of that theorem). Again we revert to a more general set up
as follows. Let V,W be complex, finite-dimensional vector spaces, A : C → End(V),
B : C → End(W) rational functions such that

• A(z),B(z) are regular and invertible at z = 0 and z = ∞.
• A(∞) ∈ GL(V) is a semisimple operator.
• [A(z),A(w)] = 0 = [B(z),B(w)].
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Let b0(z) = log0(B(0)−1B(z)) be defined according to Proposition 8.4 and b∞(z) =
log(B(∞)−1B(z)) using Proposition 5.4. Let C1 denote a contour in C× enclosing all
the poles of A(z)±1 and not enclosing 0. Define

X0(ζ ) = exp
(˛

C1

A(w)−1A′(w) ⊗ b0(ζw) dw

)

X∞(ζ ) = exp
(˛

C1

A(w)−1A′(w) ⊗ b∞(ζw) dw

)

where, for X0 we need to take ζ small enough so that ζ−1Y(B(0)−1B(w)) is outside of C1

and hence b0(ζw) is analytic within C1, and for X∞ we need to take ζ large enough so
that ζ−1X(B(∞)−1B(w)) is outside of C1 and hence b∞(ζw) is analytic within C1.

We need to prove that both X0(ζ ) and X∞(ζ ) extend to the same rational function
of ζ , taking values in End(V⊗W). For this we consider the Jordan decomposition A(z) =
AS(z)AU(z). By [13, Lemma 4.12], AS(z) and AU(z) are again rational functions of z.
Furthermore, AU(∞) = 1 by our assumption that A(∞) is semisimple. Since logarithmic
derivative of A(z) splits the two additively, we can treat the semisimple and unipotent
cases separately, analogous to the proof of Claim 1 in Theorem 5.5 given in Section 5.6.

The semisimple case reduces to the scalar case, i.e., when V is one-dimensional
and

A(z) = A(∞)
∏

j

z − αj

z − βj

for some αj, βj ∈ C×. Following the computation given in Section 5.6, we get

X0(ζ ) =
∏

j

1 ⊗ B(ζαj)B(ζβj)
−1 = X∞(ζ )

Now assuming A(z) is unipotent and A(∞) = 1, we get that log(A(z)) is again a rational
function of z, vanishing at z = ∞. Decomposing it into partial fractions yields

log
(

A(z)
)=

∑

j∈J
n∈Z≥0

Nj,n

(z − αj)n+1

where J is a finite indexing set and αj ∈ C×. We obtain

X0(ζ ) = exp

⎛

⎜

⎜

⎝

∑

j∈J
n∈Z≥0

−(n + 1)Nj,n ⊗ ∂n+1
w

(n + 1)!b0(ζw)

∣

∣

∣

∣

w=αj

⎞

⎟

⎟

⎠
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X∞(ζ ) = exp

⎛

⎜

⎜

⎝

∑

j∈J
n∈Z≥0

−(n + 1)Nj,n ⊗ ∂n+1
w

(n + 1)!b∞(ζw)

∣

∣

∣

∣

w=αj

⎞

⎟

⎟

⎠

which are both rational functions, since the Nj,n are nilpotent and pairwise commute. As
rational functions, the two are the same since b′

0(w) = b′
∞(w) = B(w)−1B′(w). �

8.7. Commutation relation with AV1,V2(ζ ). — Let C ⊂ C be a contour, and a� : C →
End(V�), � = 1,2 two meromorphic functions which are analytic within C and commute
with the operators {	±

i,±r}i∈I,r∈Z≥0 . For any k ∈ I, define operators X±,�
k ∈ End(V1 ⊗ V2)

by

X±,1
k =

˛
C

a1(w)X±
k (w) ⊗ a2(w) dw and

X±,2
k =

˛
C

a1(w) ⊗ a2(w)X±
k (w) dw

Proposition. — The following commutation relations hold

Ad
(

AV1,V2(ζ )
)

X±,1
k

=
˛
C

a1(w)X±
k (w) ⊗ a2(w)	k

(

q2lζw
)±1

	k(ζw)∓1 dw

Ad
(

AV1,V2(ζ )
)

X±,2
k

=
˛
C

a1(w)	k

(

ζ−1w
)±1

	k

(

q−2lζ−1w
)∓1 ⊗ a2(w)X±

k (w) dw

The proof of this proposition is identical to that of Proposition 5.10, except that
the following version of relation (3.5) is needed. For each i, k ∈ I,

[

	i(z)
−1	 ′

i (z),X±
k (w)

]

=
(

1
z − q∓bikw

− 1
z − q±bikw

)

X±
k (w)

+ wq±bik

z(z − q±bikw)
X±

k

(

q∓bik z
)− w

z(q±bik z − w)
X±

k

(

q±bik z
)

One can derive this relation easily from (QL3) of Proposition 3.8 following the
computation given in the proof of Lemma 3.13.



322 SACHIN GAUTAM, VALERIO TOLEDANO LAREDO

8.8. Regular q-difference equations. — We review below the existence and uniqueness
of solutions of regular q-difference equations. Let p ∈ C× be such that |p| �= 1, W a com-
plex, finite-dimensional vector space, and consider the difference equation

(8.7) F(pz) = B(z)F(z)

with values in End(W). Here, B(z) is a meromorphic, End(W)-valued function. We shall
assume that the equation is regular, that is that B is holomorphic near z = 0, and such that
B(0) = 1. The following result is well-known (see, e.g., [26, §1.2.2]).

Lemma. — There is a unique formal series F(z) ∈ End(W)[[z]] which satisfies (8.7) and

F(0) = 1. Moreover, F converges near z = 0 to a meromorphic function defined on C. Any meromorphic

solution G(z) of (8.7) which is holomorphic in a neighbourhood of z = 0 is of the form F(z)C where

C = G(0) ∈ End(W) is a constant matrix.

Let us remark that the existence of the formal series is automatic, since Equa-
tion (8.7) is equivalent to the recurrence relation (pn − 1)Fn = ∑n−1

m=0 Bn−mFm, where
F = ∑

n≥0 Fnz
n and B = ∑

n≥0 Bnz
n, with F0 = 1 = B0. The convergence of F is proved

in [26, §1.2.2 Lemme 1]. The uniqueness is also clear, since the ratio F(z)−1G(z) is a
holomorphic function on the elliptic curve C×/pZ, and hence a constant.

One gets a similar assertion if z = 0 is changed to z = ∞ and one considers formal
series in z−1.

8.9. The abelian R-matrix of Uq(Lg). — Assume now that |q| �= 1. Let V1,V2 ∈
Repfd(Uq(Lg)), and let AV1,V2(ζ ) be the operator defined in 8.5. Consider the q-
difference equation

RV1,V2

(

q2lζ
)= AV1,V2(ζ )RV1,V2(ζ )

This equation is regular at 0 and ∞ since AV1,V2(0) = 1 = AV1,V2(∞). By Lemma 8.8, it
admits two unique formal solutions R

±
(ζ ) near q±∞, which are normalised by

R
+(

q∞)= 1 = R
−(

q−∞)

These solutions converge in a neighbourhood of q±∞, and extend to meromorphic func-
tions on the entire complex plane which are given by the products

R
+
(ζ ) =

−→
∏

n≥0
AV1,V2

(

q2lnζ
)−1

and R
−
(ζ ) =

−→
∏

n≥1
AV1,V2

(

q−2lnζ
)

Set

R0,±
V1,V2

(ζ ) =
{

q∓
hR
±
(ζ ) if |q| < 1

q±
hR
±
(ζ ) if |q| > 1
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By uniqueness, the evaluation on V1 ⊗ V2 of the operator R0(ζ ) given by (8.5), is the
expansion at ζ = 0 of R0,ε

V1,V2
(ζ ), where ε ∈ {±} is such that qε∞ = 0.

The following is the analog of Theorem 5.9 for Uq(Lg).

Theorem. — The operators R0,±
V1,V2

(ζ ) have the following properties

(i) The map

σ ◦ R0,±
V1,V2

(ζ ) : V1(ζ ) ⊗1 V2 → V2 ⊗1 V1(ζ )

where σ is the flip of tensor factors, is a morphism of Uq(Lg)-modules, which is natural in

V1 and V2.

(ii) For any V1,V2,V3 ∈ Repfd(Uq(Lg)) we have

R0,±
V1⊗ζ1V2,V3

(ζ2) = R0,±
V1,V3

(ζ1ζ2)R
0,±
V2,V3

(ζ2)

R0,±
V1,V2⊗ζ2V3

(ζ1ζ2) = R0,±
V1,V3

(ζ1ζ2)R
0,±
V1,V2

(ζ1)

(iii) The following unitary condition holds

σ ◦ R0,±
V1,V2

(

ζ−1
) ◦ σ−1 = R0,∓

V2,V1
(ζ )−1

(iv) For α,β ∈ C×, we have

R0,±
V1(α),V2(β)(ζ ) = R0,±

V1,V2

(

ζαβ−1
)

(v) For any ζ, ζ ′,
[

R0,±
V1,V2

(ζ ),R0,±
V1,V2

(

ζ ′)]= 0 = [

R0,±
V1,V2

(ζ ),R0,∓
V1,V2

(

ζ ′)]

(vi) R0,±
V1,V2

(ζ ) is holomorphic near q±∞, and

R0,±
V1,V2

(

q±∞)=
{

q−
h if q±∞ = 0
q
h if q±∞ = ∞

(vii) The poles of R0,+
V1,V2

(ζ )±1 and R0,−
V1,V2

(ζ )±1 are contained in

σ(V2)σ (V1)
−1q−l−rq−2lZ≥0 and σ(V2)σ (V1)

−1q−l−rq2lZ>0

respectively, where r ranges over the integers such that c
(r)

ij �= 0 for some i, j ∈ I.

9. Kohno–Drinfeld theorem for abelian, additive qKZ equations

In this section, we prove that, when Im � �= 0, the monodromy of the additive qKZ
equations on n points defined by the commutative R-matrix of the Yangian is given by
the commutative R-matrix of the quantum loop algebra. The general case is treated in
9.6, and follows from the n = 2 case which is treated in 9.2–9.3. In turn, the latter rests
on relating the coefficient matrices of the difference equations whose solutions are the
commutative R-matrix of Y�(g) and Uq(Lg) respectively, which is done in 9.1 below.
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9.1. Let V1,V2 be two finite-dimensional representations of Y�(g), AV1,V2(s) the
meromorphic GL(V1 ⊗ V2)-valued function constructed in 5.5, and consider the differ-
ence equation15

(9.1) f (s + 1) =AV1,V2(s)f (s)

Assume further that V1,V2 are non-congruent, let V� = �(V�) be the repre-
sentations of Uq(Lg) obtained by using the functor � of Section 6, and AV1,V2(ζ ) ∈
GL(V1 ⊗ V2) the operator constructed in 8.5.

Proposition. — The operator AV1,V2(ζ ) is the monodromy of the difference equation (9.1). That

is,

AV1,V2(ζ ) =
∏

m∈Z

AV1,V2(s + m)|ζ=e2πιs

Proof. — For the purposes of the proof, we restrict ourselves to a typical factor in
the definition of AV1,V2(s). That is, fix i, j ∈ I and define

Aij

V1,V2
(s) = exp

(˛
C1

t′i (v) ⊗ tj(v + s) dv

)

where C1 encloses the poles of ξi(v)±1 on V1, and s is such that tj(v + s) is analytic within
C1. Since V1 is non-congruent, we may further assume that no two distinct points in the
interior of C1 or on C1 are congruent modulo Z.

By Theorem 5.5, Aij

V1,V2
(s) is a rational function of the form 1 + O(s−2). The

corresponding monodromy matrix M(ζ ) is a rational function of ζ = exp(2πιs) which is
given by

M(ζ ) =
∏

m∈Z

Aij

V1,V2
(s + m)|ζ=e2πιs = lim

N→∞

(

N
∏

m=−N

Aij

V1,V2
(s + m)|ζ=e2πιs

)

The corresponding factor of AV1,V2(ζ ) is given by

A ij

V1,V2
(ζ ) = exp

(˛
˜C1

	i(w)−1	i(w)′ ⊗ H−
j (wζ) dw

)

where ˜C1 = exp(2πιC1), and H−
j (w) = log0(	

+
j,0	j(w)) is given by Proposition 8.4. Note

that ˜C1 is again a Jordan curve because of the assumptions imposed on C1.

15 Note that (9.1) differs from the difference equation considered in 5.8 since its step is 1, not l�.



MEROMORPHIC TENSOR EQUIVALENCE 325

We wish to show that M(ζ ) = A ij

V1,V2
(ζ ). Since both sides are rational functions of

ζ , it suffices to prove this for ζ near 0, that is Im(s) 
 0. Now

M(ζ ) = lim
N→∞

exp

(

N
∑

m=−N

˛
C1

t′i (v) ⊗ tj(v + s + m) dv

)

Since tj(v) = �ξj,0v
−1 + O(v−2), the sum

∑N
m=−N tj(u + m) converges uniformly on com-

pact subsets of {| Im u| > R} for R large enough. To see this, we note that tj(v), as de-
fined using Proposition 5.4, is a holomorphic function in a neighbourhood of v = ∞.
Its Taylor series tj(v) = �

∑

r≥0 tj,ru
−r−1 therefore converges uniformly for |u| > R, for

some R > 0. Each partial sum fN(u) = ∑N
m=−N tj(u + m) is a holomorphic function on


 = {| Im(u)| > R} since the set of poles of fN is contained in the shifts of the closed disc
D0(R) := {|u| ≤ R} by integers m ∈ {−N, . . . ,N}, and hence does not intersect 
.

Given a compact subset K ⊂ 
, let R2 > R1 > R be such that R1 < |u| < R2 for
each u ∈ K. Take M > N > R1 +R2 and let us find an upper bound on ‖fN+1(u)− fM(u)‖,
which goes to 0 as N goes to ∞, uniformly for each u ∈ K. By definition of the radius of
convergence there exists P > 0 such that ‖�tj,r‖ ≤ PRr+1

1 for each r ≥ 0
First order term. For each u ∈ K and m ≥ N we have |u2 − m2| > m2 − R2

2. Therefore
∣

∣

∣

∣

∣

M
∑

m=N+1

1
u + m

+ 1
u − m

∣

∣

∣

∣

∣

≤
∞
∑

m=N+1

2|u|
|u2 − m2| <

∞
∑

m=N+1

2R2

m2 − R2
2

≤
ˆ ∞

N

2R2

x2 − R2
2

dx = ln
(

N + R2

N − R2

)

Higher order terms. Again we have |u ± m| > m − R2 for each u ∈ K. Thus, for each
r ≥ 1 we get

∣

∣

∣

∣

∣

M
∑

m=N+1

1
(u ± m)r+1

∣

∣

∣

∣

∣

≤
∞
∑

m=N+1

1
(m − R2)r+1

≤
ˆ ∞

N

1
(x − R2)r+1

dx

= 1
r(N − R2)r

Hence, for any M > N we obtain the following bound:

‖fN+1(u) − fM(u)‖ < 2PR1

(

ln
(

N + R2

N − R2

)

+
∑

r≥1

1
r

(

R1

N − R2

)r
)

= 2PR1 ln
(

N + R2

N − R1 − R2

)

Thus given ε > 0 we can choose N large enough so that the above bound is less than ε

uniformly for each u ∈ K, as claimed.
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Now the exponential of limN→∞
∑N

m=−N tj(u + m) is
∏

m ξj(u + m) = 	j(e
2πιu) (see

Section 6.3). By the uniqueness of log0 this implies that, for Im s 
 0,

lim
N→∞

N
∑

m=−N

tj(v + s + m) = H−
j

(

ζ e2πιv
)+ log

(

e−πι�ξj,0
)

To see this we observe that, for a fixed v, both sides of the equation above have the
same exponential and the same value at ζ = 0, or equivalently Im s → ∞, in the domain
{Im(s) > R−Im(v)}. For v ranging over a compact set (e.g., interior of C1 and C1 included,
which is needed below) we can take Im s 
 0 so that for each v in this compact set, the
equation holds. Thus we get

M(ζ ) = exp
(˛

C1

t′i (v) ⊗ (

H−
j

(

ζ e2πιv
)+ log

(

e−πι�ξj,0
))

dv

)

Since t′i (v) = O(v−2), we get
¸

t′i (v) ⊗ log(e−πι�ξj,0) dv = 0, which implies that

M(ζ ) = exp
(˛

C1

ξi(v)−1ξi(v)′ ⊗ H−
j

(

ζ e2πιv
)

dv

)

Noting that, by (6.3)

	i

(

e2πιv
)−1 d	i(e

2πιv)

dv
= g+

i (v)−1g+
i (v)′ + ξi(v)−1ξi(v)′ + g−

i (v)−1g−
i (v)′

and that g±
i (v) are analytic and invertible within C1 by the non-congruence assumption,

so that
˛
C1

g±
i (v)−1g±

i (v)′ ⊗ H−
j

(

ζ e2πιv
)

dv = 0

we get

M(ζ ) = exp
(˛

C1

	i

(

e2πιv
)−1 d	i(e

2πιv)

dv
⊗ H−

j

(

ζ e2πιv
)

dv

)

= exp
(˛

˜C1

	i(w)−1 d	i(w)

dw
⊗ H−

j (ζw) dw

)

as claimed. �
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9.2. The (reduced) qKZ equations on n = 2 points. — Assume henceforth that Im � �= 0.
Fix ε ∈ {±}, let V1,V2 ∈ Repfd(Y�(g)), and consider the abelian qKZ equation

f (s + 1) =R0,ε
V1,V2

(s)f (s)

with values in End(V1 ⊗ V2).
By Proposition 7.1, this equation admits both right and left canonical solutions

�ε
±(s). The corresponding connection matrix is given by

Sε
V1,V2

(s) = �ε
+(s)−1�ε

−(s)

= lim
N→∞

R0,ε
V1,V2

(s + N) · · ·R0,ε
V1,V2

(s) · · ·R0,ε
V1,V2

(s − N)

and is a meromorphic function of ζ = e2πιs which admits a limit as Im s → ±∞, depend-
ing on whether Im(ε�)≷ 0. In particular, Sε

V1,V2
(ζ ) is regular at ζ = qε∞.

Lemma.

Sε
V1,V2

(

qε∞)=
{

q−
h if qε∞ = 0
q
h if qε∞ = ∞

Proof. — Let us assume Im(�) > 0 and ε = +, for definiteness. Then, by Proposi-
tion 7.1, �+

+(s) has the asymptotic expansion of the form (1 + O(s−1))s�
h in any right
half-plane, while �+

−(s) ∼ (1 + O(s−1))(−s)�
h only in an obtuse sector shown in Fig-
ure 1. Thus we can find a common domain for both, where the limit Im(s) → ∞ can be
taken. Now we have

S+
V1,V2

(0) = lim
Im(s)→∞

(

�+
+(s)

)−1
�+

−(s) = lim
Im(s)→∞

s−�
h(−s)�
h

= lim
Im(s)→∞

e�
h(ln(−s)−ln(s)) = e−πι�
h �

Remark. — Note that in the proof above, there is no common domain where both
�+

±(s) admit the claimed asymptotic expansions and Im(s) can go to −∞. Consequently,
the computation above cannot be carried out for S+

V1,V2
(∞). This is in contrast with the

computation of the monodromy of an additive difference equation when the coefficient
matrix is rational, given, for example, in [13, Prop. 4.8].

9.3. Kohno–Drinfeld theorem for abelian qKZ equations on 2 points. — The following
equates the monodromy of the abelian qKZ equations with the commutative R-matrix
of Uq(Lg) constructed in 8.9.

Theorem. — If V1,V2 are non-congruent, V� = �(V�) are the corresponding representations

of Uq(Lg), and R0,ε

V1,V2
(ζ ) is the commutative R-matrix of Uq(Lg), then

Sε
V1,V2

(ζ ) = R0,ε

V1,V2
(ζ )
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Proof. — Let A±(s) be the right and left fundamental solutions of the difference
equation f (s + 1) =AV1,V2(s)f (s) considered in 9.1. We claim that

(9.2) �ε
±(s + l�)�ε

±(s)−1 =A±(s)

Assuming this for now, we see that Sε
V1,V2

(ζ ) and R0,ε

V1,V2
(ζ ) satisfy the same q-

difference equation. Indeed,

Sε
V1,V2

(

q2lζ
)

Sε
V1,V2

(ζ )−1 = �ε
+(s + l�)−1�ε

−(s + l�)�ε
−(s)−1�ε

+(s)

=A+(s)−1A−(s)

= AV1,V2(ζ )

= R0,ε

V1,V2

(

q2lζ
)

R0,ε

V1,V2
(ζ )−1

where the third equality follows by Proposition 9.1, and the last one by definition of
R0,ε

V1,V2
. Note that the reordering of factors in the calculation above is permissible since

all the meromorphic functions involved take values in a commutative subalgebra of
End(V1 ⊗ V2). Since both Sε

V1,V2
and R0,ε

V1,V2
are holomorphic near, and have the same

value at ζ = qε∞, they are equal.
Returning to the claim, let Lε

±(s) denote the left-hand side of (9.2). Then,

Lε
±(s + 1)Lε

±(s)−1 = �ε
±(s + l� + 1)�ε

±(s + 1)−1�ε
±(s)�ε

±(s + l�)−1

=R0,ε
V1,V2

(s + l�)R0,ε
V1,V2

(s)−1

=AV1,V2(s)

Thus, Lε
±(s) and A±(s) satisfy the same difference equation. Since they also have the

same asymptotics as s → ∞ by Proposition 7.1, it follows that they are equal. �

Remark. — The monodromy Sε
V1,V2

(ζ ) may be written in terms of the tensor struc-
tures J ±

V1,V2
(s) constructed in 7.3 as

Sε
V1,V2

(ζ ) = J ε
V1,V2

(s)R0,ε
V1,V2

(s)
(

J −ε
V2,V1

(−s)
)−1

21

where we used the unitarity constraint (iii) of Theorem 5.9. We can rearrange the factors
of the triple product in the right-hand side above, again using the fact that all relevant
meromorphic functions take values in a commutative subalgebra of End(V1 ⊗ V2). This,
and Theorem 9.3 imply the following equation

σ ◦ R0,ε

V1,V2
(ζ ) = J −ε

V2,V1
(−s)−1 ◦ (σ ◦R0,ε

V1,V2
(s)

) ◦J ε
V1,V2

(s)

Here V� = �(V�) for � = 1,2. This equation implies the commutativity of the follow-
ing diagram, which means that the tensor structures J ±

V1,V2
(s) are compatible with the
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meromorphic braidings on Repfd(Y�(g)) and Repfd(Uq(Lg)) given by R0,ε
V1,V2

(s) and
R0,ε

V1,V2
(ζ ).

�(V1) ⊗ζ �(V2)

J ε
V1,V2

(s)

�(V1 ⊗s V2)

�(V1)(ζ ) ⊗1 �(V2)

σ◦R0,ε
V1,V2

(ζ )

�(V1(s) ⊗0 V2)

�(σ◦R0,ε
V1,V2

(s))

�(V2) ⊗1 �(V1)(ζ ) �(V2 ⊗0 V1(s))

(

�(V2) ⊗ζ−1 �(V1)
)

(ζ )
J −ε

V2,V1
(−s)

(�(V2 ⊗−s V1)) (ζ )

9.4. The abelian qKZ equations. — Fix ε ∈ {±} and n ≥ 2, and let V1, . . . ,Vn ∈
Repfd(Y�(g)).

The following system of difference equations for a meromorphic function of n vari-
ables � : Cn → End(V1 ⊗ · · · ⊗ Vn) is an abelian version of the qKZ equations [11, 27]

(9.3) �(s + ei) = Ai(s)�(s)

where s = (s1, . . . , sn), {ei}n
i=1 is the standard basis of Cn, and

Ai(s) =R0,ε
i−1,i(si−1 − si − 1)−1 · · ·R0,ε

1,i (s1 − si − 1)−1

·R0,ε
i,n (si − sn) · · ·R0,ε

i,i+1(si − si+1)

with R0,ε
i,j =R0,ε

Vi,Vj
.

The above system is integrable, that is it satisfies

Ai(s + ej)Aj(s) = Aj(s + ei)Ai(s)

9.5. Canonical fundamental solutions. — The above system admits a set of canonical
fundamental solutions which are parametrised by permutations σ ∈ Sn, and correspond
to the right/left solutions in the case n = 2.

To describe them, let �ε
±,ij ⊂ Cn denote the asymptotic zones given in Proposi-

tion 7.1 with s = si − sj , where 1 ≤ i �= j ≤ n. Thus,

�ε
±,ij =

{

s ∈ Cn| ± Re(si − sj) 
 0 and ± Re
(

(si − sj)/n
)
 0

}
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where n ∈ C× is perpendicular to � and such that Re(n) ≥ 0, and the second condition
in the definition of �ε

±,ij is required only if ±Re(ε�) < 0.
For a permutation σ ∈ Sn, set

C±(σ ) = {

i < j | σ−1(i) ≶ σ−1(j)
}

and define �ε(σ ) ∈ Cn by

�ε(σ ) =
⋂

(i,j)∈C+(σ )

�ε
+,ij ∩

⋂

(i,j)∈C−(σ )

�ε
−,ij

Proposition. — For any σ ∈ Sn, Equation (9.3) admits a fundamental solution �ε
σ which is

uniquely determined by the following requirements

(i) �ε
σ is holomorphic and invertible in �ε(σ ).

(ii) �ε
σ has an asymptotic expansion of the form

�ε
σ (s) ∼ (

1 + o(1)
)

∏

(i,j)∈C+(σ )

(si − sj)
�
h

∏

(i,j)∈C−(σ )

(sj − si)
�
h

for s ∈ �ε(σ ), with si − sj → ∞ for any i �= j .

Proof. — The solution �ε
σ is constructed as follows. For each i < j, let �ε

±,ij be the
right and left canonical solutions of the abelian qKZ equation �ij(s + 1) = R0,ε

i,j (s)�ij(s)

given in Proposition 7.1. Then,

�ε
σ (s) =

∏

(i,j)∈C+(σ )

�ε
+(si − sj)

∏

(i,j)∈C−(σ )

�ε
−(si − sj)

We now prove the uniqueness (see, e.g., [13, §4.3] for the one variable case).
The ratio �ε

σ = (�ε
σ )−1	ε

σ of two solutions is holomorphic for s ∈ �ε(σ ), and peri-
odic under the lattice Zn ⊂ Cn. It therefore descends to a holomorphic function on
the torus T = Cn/Zn = (C×)n. We claim that �ε

σ (ζ ) = 1 for any ζ ∈ (C×)n. Note that
�ε

σ (ζ ) = �ε
σ (s)−1	ε

σ (s) for any s ∈ �ε
σ such that ζj = e2πιsj for every j. By definition of the

asymptotic zone �ε
σ , we can find a sequence of points {s(1), s(2), · · · } in �ε

σ such that

(a) For every j = 1, · · · , n, and N ≥ 1, e
2πιs

(N)
j = ζj .

(b) For i �= j, s
(N)

i − s
(N)

j → ∞ as N → ∞.

Property (a) ensures that we have the following for each N ≥ 1

�ε
σ (ζ ) = �ε

σ

(

s(N)
)−1

	ε
σ

(

s(N)
)

The asymptotics of �ε
σ and 	ε

σ , and property (b) above then imply that, as we let N → ∞,
the ratio goes to 1. Note that, because of the abelian nature of the difference equations,
the multivalued factors in the asymptotics from (ii) of the statement of the proposition
cancel out. Thus �ε

σ (ζ ) = 1 for every ζ ∈ (C×)n and we are done. �
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9.6. Kohno–Drinfeld theorem for abelian qKZ equations. — Assume now that V1, . . . ,Vn

are non-resonant, and let Vi = �(Vi) be the corresponding representations of Uq(Lg).
The following computes the monodromy of the abelian qKZ equations on V1 ⊗ · · · ⊗ Vn

in terms of the commutative R-matrix of Uq(Lg) acting on V1 ⊗ · · · ⊗ Vn.

Theorem. — Let σ ∈Sn, and set σi = (i i + 1). Then,

(

�ε
σ (s)

)−1
�ε

σiσ
(s) = R0,ε

Vi,Vi+1

(

ζiζ
−1
i+1

)±1

if (i, i + 1) ∈ C±(σ ), where ζj = e2πιsj .

Proof. — This follows from the explicit form of the canonical fundamental solutions
given by Proposition 9.5 and Theorem 9.3. �
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Appendix A: The inverse of the q-Cartan matrix of g

A.1 Let A = (aij)i∈I be a Cartan matrix of finite type, and di ∈ Z>0 (i ∈ I) be
relatively prime symmetrising integers, i.e., diaij = djaji for every i, j ∈ I. Consider the sym-
metrised Cartan matrix B = (diaij), and its q-analog B(q) = ([diaij]q). The latter defines a
C(q)-valued, symmetric bilinear form on

⊕

j∈I Q(q)αj by

(αi, αj)q = [diaij]q

We give below explicit expressions for the fundamental coweights {λ∨
i (q)}i∈I in

terms of {αi}. That is, we compute certain elements λ∨
i (q) ∈ ⊕

j∈I Q(q)αj such that
(λ∨

i (q), αj)q = δij for every i, j ∈ I. The main result of these calculations is the following.

Theorem. — Let l = mh∨ where m = 1,2,3 for types ADE,BCF and G respectively, and h∨

is the dual Coxeter number. Then, for each i ∈ I

[l]qλ
∨
i (q) ∈ ⊕j∈IZ≥0

[

q, q−1
]

αj
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A.2 Below we follow Bourbaki’s conventions, especially for the labels of the
Dynkin diagrams. Recall the standard notations for q-numbers introduced in Section 3.6:
[m]q = qm−q−m

q−q−1 . For m ≥ 0, [m]q = ∑m−1
i=0 qm−1−2i ∈ Z≥0[q, q−1]. Moreover, define {m}q :=

qm + q−m. The following identity is immediate and will be needed later:

(A.1) [a]q{b}q = [a + b]q + [a − b]q

which belongs to Z≥0[q, q−1] if a ≥ b ≥ 0.
Also we note that for a, b ∈ Z≥0, with a �= 0, we have

[ab]q

[a]q

= [b]qa ∈ Z≥0

[

q, q−1
]

A.3 An. — In this case l = n + 1. We have

λ∨
i (q) = 1

[n + 1]q

⎛

⎝[n − i + 1]q

⎛

⎝

i−1
∑

j=1

[ j]qαj

⎞

⎠+ [i]q

⎛

⎝

n
∑

j=i

[n − j + 1]qαj

⎞

⎠

⎞

⎠

Thus the assertion of Theorem A.1 holds in this case.

A.4 Bn. — In this case l = 2(n + 1). For 1 ≤ i ≤ n − 1 we have

λ∨
i (q) = 1

{n + 1}q

⎛

⎝{n − i + 1}q

⎛

⎝

i−1
∑

j=1

[ j]qαj

⎞

⎠

+[i]q

⎛

⎝

⎛

⎝

n−1
∑

j=i

{n − j + 1}qαj

⎞

⎠+ αn

⎞

⎠

⎞

⎠

and

λ∨
n (q) = 1

{n + 1}q

⎛

⎝

⎛

⎝

n−1
∑

j=1

[ j]qαj

⎞

⎠+ [n]q

[2]q

αn

⎞

⎠

The statement of Theorem A.1 in this case follows for 1 ≤ i ≤ n − 1 from the identity
[m]q{m}q = [2m]q. For λ∨

n (q), we can write (using the same identity)

λ∨
n (q) = 1

[2(n + 1)]q

⎛

⎝[n + 1]q

⎛

⎝

n−1
∑

j=1

[ j]qαj

⎞

⎠+ [n + 1]q[n]q

[2]q

αn

⎞

⎠

Now it is clear that the coefficient of αn is a Laurent polynomial in q with positive integer
coefficients.
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A.5 Cn. — In this case l = 2(2n − 1). We have the following for each 1 ≤ i ≤ n − 1

λ∨
i (q) = 1

[2]q{2n − 1}q

⎛

⎝{2n − 2i − 1}q

⎛

⎝

i−1
∑

j=1

[ j]q2αj

⎞

⎠

+ [i]q2

⎛

⎝

n−1
∑

j=i

{2n − 2j − 1}qαj

⎞

⎠+ [2i]qαn

⎞

⎠

and

λ∨
n (q) = 1

[2]q{2n − 1}q

n
∑

j=1

[2j]qαj

The statement of Theorem A.1 follows for λ∨
n (q). For 1 ≤ i ≤ n − 1 we will have to use

the following variant of (A.1):

[2n − 1]q{2n − 2j − 1}q

[2]q

= [4n − 2j − 2]q + [2j]q

[2]q

∈ Z≥0

[

q, q−1
]

A.6 Dn. — In this case l = 2n − 2. We have the following for 1 ≤ i ≤ n − 2:

λ∨
i (q) = 1

{n − 1}q

⎛

⎝{n − i − 1}q

⎛

⎝

i−1
∑

j=1

[ j]qαj

⎞

⎠

+ [i]q

⎛

⎝

⎛

⎝

n−2
∑

j=i

{n − j − 1}qαj

⎞

⎠+ αn−1 + αn

⎞

⎠

⎞

⎠

and

λ∨
n−1(q) = 1

{n − 1}q

⎛

⎝

⎛

⎝

n−2
∑

j=1

[ j]qαj

⎞

⎠+ [n]q

[2]q

αn−1 + [n − 2]q

[2]q

αn

⎞

⎠

λ∨
n (q) = 1

{n − 1}q

⎛

⎝

⎛

⎝

n−2
∑

j=1

[ j]qαj

⎞

⎠+ [n − 2]q

[2]q

αn−1 + [n]q

[2]q

αn

⎞

⎠

Again we obtain Theorem A.1 by the same argument as for Bn.
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A.7 F4. — In this case l = 18. We get the following

λ∨
1 (q) = {3}q

{9}q

({5}qα1 + [3]q2α2 + {2}qα3 + α4

)

λ∨
2 (q) = {3}q

{9}q

([3]q2α1 + [6]qα2 + [4]qα3 + [2]qα4

)

λ∨
3 (q) = 1

{9}q

({2}q{3}qα1 + [4]q{3}qα2 + [3]q2

({2}qα3 + α4

))

λ∨
4 (q) = 1

{9}q

(

{3}qα1 + [2]q{3}qα2 + [3]q2α3 + {3}q{4}q

[2]q

α4

)

Again the statement of Theorem A.1 is clearly true, except for the coefficient of α4

in λ∨
4 (q). For that entry we have

[9]q{3}q

[2]q

= [12]q + [6]q

[2]q

∈ Z≥0

[

q, q−1
]

A.8 G2. — In this case l = 12. We have the following answer

λ∨
1 (q) = {2}q

{6}q

( [2]q

[3]q

α1 + α2

)

λ∨
2 (q) = {2}q

{6}q

(

α1 + {3}qα2

)

As before we multiply and divide these expressions by [6]q to get the denominator
[12]q. Then it is easy to see the coefficients of α1, α2 are in Z≥0[q, q−1] as claimed.

A.9 E series. — The computations below were carried out using sage.

A.10 E6. — In this case l = 12. We have the following expressions:

[12]qλ
∨
1 (q) = {3}q[8]qα1 + {2}q[6]qα2 + {2}q{3}q[5]qα3 + [4]q[6]qα4

+ [2]q{3}q[4]qα5 + {3}q[4]qα6

[12]qλ
∨
2 (q) = {2}q[6]qα1 + {2}q{3}q[6]qα2 + [4]q[6]qα3 + {2}q[3]q[6]qα4

+ [4]q[6]qα5 + {2}q[6]qα6

[12]qλ
∨
3 (q) = {2}q{3}q[5]qα1 + [4]q[6]qα2 + {3}q[4]q[5]qα3

+ {1}q[4]q[6]qα4 + [2]2
q{3}q[4]qα5 + [2]q{3}q[4]qα6

[12]qλ
∨
4 (q) = [4]q[6]qα1 + {2}q[3]q[6]qα2 + [2]q[4]q[6]qα3

+ [3]q[4]q[6]qα4 + [2]q[4]q[6]qα5 + [4]q[6]qα6

[12]qλ
∨
5 (q) = [2]q{3}q[4]qα1 + [4]q[6]qα2 + [2]2

q{3}q[4]qα3

+ [2]q[4]q[6]qα4 + {3}q[4]q[5]qα5 + {2}q{3}q[5]qα6

[12]qλ
∨
6 (q) = {3}q[4]qα1 + {2}q[6]qα2 + [2]q{3}q[4]qα3 + [4]q[6]qα4

+ {2}q{3}q[5]qα5 + {3}q[8]qα6
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A.11 E7. — In this case l = 18 and we have the following expressions:

{9}qλ
∨
1 (q) = {3}q{5}qα1 + {2}q{3}qα2 + {3}q[3]q2α3 + {3}q[4]qα4

+ [6]qα5 + [2]q{3}qα6 + {3}qα7

{9}qλ
∨
2 (q) = {2}q{3}qα1 + {3}q[7]q

[2]q

α2 + {3}q[4]qα3 + {2}q[6]qα4

+ [3]q[3]q2α5 + [6]qα6 + [3]q2α7

{9}qλ
∨
3 (q) = {3}q[3]q2α1 + {3}q[4]qα2 + {3}q[6]qα3 + [2]q{3}q[4]qα4

+ [2]q[6]qα5 + [2]2
q{3}qα6 + [2]q{3}qα7

{9}qλ
∨
4 (q) = {3}q[4]qα1 + {2}q[6]qα2 + [2]q{3}q[4]qα3 + [4]q[6]qα4

+ [3]q[6]qα5 + [2]q[6]qα6 + [6]qα7

{9}qλ
∨
5 (q) = [6]qα1 + [3]q[3]q2α2 + [2]q[6]qα3 + [3]q[6]qα4

+ [3]q2[5]qα5 + {3}q[5]qα6 + {3}q[5]q

[2]q

α7

{9}qλ
∨
6 (q) = [2]q{3}qα1 + [6]qα2 + [2]2

q{3}qα3 + [2]q[6]qα4

+ {3}q[5]qα5 + [2]q{3}q{4}qα6 + {3}q{4}qα7

{9}qλ
∨
7 (q) = {3}qα1 + [3]q2α2 + [2]q{3}qα3 + [6]qα4

+ {3}q[5]q

[2]q

α5 + {3}q{4}qα6 + [3]q4α7

It only remains to observe that

[9]q{3}q

[2]q

= [12]q + [6]q

[2]q

= [6]q2 + [3]q2 ∈ Z≥0

[

q, q−1
]

A.12 E8. — In this case l = 30 and we have the following expression:

{15}qλ
∨
1 (q) = {5}q[4]q3α1 + {3}q[5]q2α2 + [2]q3

{5}q[7]q

[2]q

α3 + {3}q[10]qα4

+ {3}q[4]q{5}qα5 + {5}q[6]qα6 + [2]q{3}q{5}qα7

+ {3}q{5}qα8

{15}qλ
∨
2 (q) = {3}q[5]q2α1 + {3}q{5}q[4]q2α2 + {3}q[10]qα3 + [3]q2[10]qα4

+ {2}q{5}q[6]qα5 + [3]q[3]q2{5}qα6 + {5}q[6]qα7

+ {5}q[3]q2α8

{15}qλ
∨
3 (q) = [2]q3

{5}q[7]q

[2]q

α1 + {3}q[10]qα2 + [2]q3{5}q[7]qα3

+ [2]q{3}q[10]qα4 + [2]q{3}q[4]q{5}qα5 + [2]q{5}q[6]qα6

+ [2]2
q{3}q{5}qα7 + [2]q{3}q{5}qα8
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{15}qλ
∨
4 (q) = {3}q[10]qα1 + [3]q2[10]qα2 + [2]q{3}q[10]qα3 + [6]q[10]qα4

+ [4]q{5}q[6]qα5 + [3]q{5}q[6]qα6 + [2]q{5}q[6]qα7

+ {5}q[6]qα8

{15}qλ
∨
5 (q) = {3}q[4]q{5}qα1 + {2}q{5}q[6]qα2 + [2]q{3}q[4]q{5}qα3

+ [4]q{5}q[6]qα4 + {2}q{3}q[10]qα5 + [3]q2[10]qα6

+ {3}q[10]qα7 + {3}q[5]q2α8

{15}qλ
∨
6 (q) = {5}q[6]qα1 + [3]q[3]q2{5}qα2 + [2]q{5}q[6]qα3

+ [3]q{5}q[6]qα4 + [3]q2[10]qα5 + {4}q{5}q[6]qα6

+ [2]q[2]q3{4}q{5}qα7 + [2]q3{4}q{5}qα8

{15}qλ
∨
7 (q) = [2]q{3}q{5}qα1 + {5}q[6]qα2 + [2]2

q{3}q{5}qα3

+ [2]q{5}q[6]qα4 + {3}q[10]qα5 + [2]q[2]q3{4}q{5}qα6

+ [2]q[3]q4{5}qα7 + [3]q4{5}qα8

{15}qλ
∨
8 (q) = {3}q{5}qα1 + {5}q[3]q2α2 + [2]q{3}q{5}qα3 + {5}q[6]qα4

+ {3}q[5]q2α5 + [2]q3{4}q{5}qα6 + [3]q4{5}qα7 + {5}q{9}qα8

It only remains to observe that

[15]q{5}q

[2]q

= [20]q + [10]q

[2]q

= [10]q2 + [5]q2 ∈ Z≥0

[

q, q−1
]
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